《工程力学》综合复习资料.docx
《《工程力学》综合复习资料.docx》由会员分享,可在线阅读,更多相关《《工程力学》综合复习资料.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、工程力学综合复习资料(局部题无答案)目录第一章基本概念与受力图13题第二章汇交力系与力偶系6题第三章平面一般力系11题第四章材料力学绪论9题第五章轴向拉伸与压缩12题第六章剪切7题第七章扭转8题第八章弯曲内力8题第九章弯曲强度17题第十章弯曲变形8题第十一章应力状态与强度理论9题第十二章组合变形10题第十三章压杆稳定9题第一章基本概念与受力图(13题)(IT) AB梁与BC梁,在B处用光滑较链连接,A端为固定端约束,C为可动较链支座约束,试分别画出两个梁 的别离体受力图。解答:(1)(2)(3))qil口口 确定研究对象:题中要求分别画出两个梁的别离体受力图,顾名思义,我们选取AB梁与BC梁作
2、 为研究对象。取隔离体:首先我们需要将AB梁与BC梁在光滑钱链B处进行拆分,分别分析AB与BC梁的受力。 画约束反力:对于AB梁,A点为固端约束,分别受水平方向、竖直方向以及固端弯矩的作用,B 点为光滑较链,受水平方向、竖直方向作用力,如下列图a所示。对于BC梁,B点受力与AB梁的 B端受力互为作用力与反作用力,即大小相等,方向相反,C点为可动钱链支座约束,约束反力 方向沿接触面公法线,指向被约束物体内部,如下列图所示。Rc(6-3)在挤压强度计算公式中,如何计算挤压面积?有效挤压面积为实际挤压面在垂直于挤压力方向的平面上的投影面积。(6-4)画出单元体的纯剪应力状态图。(6-5)表达剪应力互
3、等定理。在相互垂直的两个平面上,剪应力必然成对出现,且大小相等;两剪应力皆垂直于两平面的交线,方向那么共 同指向或共同背离这一交线,这种关系称为剪应力互等定理。(6-6)图示钾钉接头,钢板厚度钾钉直径d=17mm,钏I钉的许用应力t =140MPa,obs=320MPa, F=24KN,试校核钾钉的剪切和挤压强度。(6-7)如图3所示,厚度为t的基础上有一方柱,柱受轴向压力P作用,那么基础的剪切面面积为,挤压面积2 ata2第七章扭转(8题)p(7-1):实心圆截面轴,两端承受扭矩T,轴的转速n=100r/min,传零率Np=10马力,许用剪应力t =20 MPa o|试求:按第三强度理论确定
4、轴的直径d O解:对于实心圆截画iWwp =、| qp 16t同时:T = 7.02x” = 0J02KN- m ;rri = 5 NmlRc=3.75 kN3qa / 424级n和蜃豳4 /4(8-8)外伸梁侬;,受礴出该梁的更2aD qaqa2 /2Q+,2=80mm,NmZb(F) =。,有N 25KM由梁的受力特点知界I. I ( Q )Iy策铲矩在B点处,Mmax=50KN.m,而由弯矩方向和中性轴的位置画出危险横截面的正应力分布图如下图,且最大压应力发生在B端截面的下边缘,其值为:Tkjf+/+ max3max(J =maxTMBy2 50x80xl06188xlO6= 2L28M
5、P;最大拉应力发生在A端截面的上边缘,其值为:max - j- j50xl80xlQ6188x1()6= 47.87MPa;YiYiYi(9-8)铸铁梁载荷及反力如图Q)所状及尺寸如图(b)所示,:2=188X 106nml求该梁的最大拉应力t及最大压应力c并指出发生在哪个截面及哪些点。答:铲2鸣+maxu C ma?虫那么94Mpa(C源照边缘各点yi=180mmbgax。qt】ax/Z/Z= 4787TVlPa 6 截侬向上边缘各点)LJT7777y2=80mm(9-9)底臂隹笛铸铁已成?-44事MPa,cr 1160 MPa, L = 10180 cm4 , ” = 15.36cm ,图
6、(b)求:(1)校核该梁的强度。(2)画出有关横截面的正应力分布图;(9-10)多篙点截面形状及尺寸图(b)所宓 Iz=188X 106mm4o求:(1)画出梁危险截面的it旗分布图, (21求该梁宗瑜笑拉应力卜皿、翦:压应力o1100 kN铁制成。cr+ = 40 MPaA7777/I Imjrml0180 cm4 , ya = 15.36cm ,yi=180mm1myb = 9.64cm。求:确定许可载荷日。(2)画出有关横截面的正应力分布图;Z 答:p=44.2 kN cA /t-(9-12):悬臂梁如下P = 20kN,梁的材料:1.4m0.6myMa划ZMeMPa ,许用压应力(9-
7、13)(9-14)(9-15)q = 80炖a ,截面轴相性矩T拶毓1九4cm , y=9.64-cm oV y 求:试画出危险横截面的正应力分布图,并校核其强度。八ax=26.5 MPa ( ot)C 什么韩性轴?意义?:max =42.2 MPa V (。c )P=20 kNh=25 cmT形截眄 弯矩真嚷为向如图所未,试画出正应力*梁的横截面形状如的玳P圆截面上半 Zy高度的分布图。&y平面内作用有正弯矩Mo(1)试画出正应力分旗JM(2)绝对值最大的正(A) a 点建位置有以下四种答缺 ”(酚b点(C) c 点(D) d 点正确答案是Ad(9-16)平面几何图形为空心矩形,z与y为形心
8、主惯性轴,各局部尺寸如下左图所示。试写出该图形对z轴的惯性矩7;和抗弯截面模量瞑(注:无答案)(9-17):一平面图形2能为三角形如下图,高力,底边长6,该图形对底边Z轴的惯性矩Iz】=bh3/12 o求:试用平移轴公式计算该图形对形心轴Z的惯性矩乙第十章弯曲变形(8题)cZA Z1h/3b试求:支反座B的反力。力二患,%(品)=-V3EI7将其代入上式联立可得补充方程:(lO-l):一次静不定梁AB, EI、L为,受均作用提示:先画出相当系统和变形图,再写出几何条”和物埋条隼,9-17 图解答提示:AUUUUUIUUWU B由题意知为一次静不定梁,去处bMI多余约束,并用相&支座反力Rb (
9、竖直向上)代替多余约束对梁的 作用,如下图。同时由于加上约束反力后的位移必须与初女也循尔定梁完全一致,可知在多余约束B处的垂直L位移必须等于零,此即变形条件:% =%(/十%(尺8)=,其中由附录山中查得:43q且_驾 =0一以二四uiimuuuuimSEIZ 3EIZ b &人笏XBRb(10-2):静不定梁AB,分布载荷外长度4a ,横截面抗弯刚度Elz求:支座B的反力。提示:首先选定多于约束,并画出相当系统,列出几何条件。(10-3)悬臂梁上长乙抗弯刚度或受力。- ill I mil ” 求: 建立该梁的挠曲线近似微分方量_AAA(2)写出该梁的边界售移条件。4.Px(10-4)悬臂梁2
10、8长抗弯刚度放,受力A(10-4)悬臂梁28长抗弯刚度放,受力A(10-4)悬臂梁28长抗弯刚度放,受力A答:(1) y(x) = 求:用积分法确定A截面的挠度及转角。解答提示:A在图示坐标系中,由于在范围内五荷载突修蝌W程:x W(x) = Px,有因为是等截面梁,所以由书中9. 6式子得到确定梁挠度的微分潺卜其积Z TEIZ 宁= -M = Px,双伙%) = ; & +01aEIzy(x) = -Px3 +cx+D,利用支承条件,可确定上述方程中的积分常数C、D。对于固定端处截面,其转角 和y方向的位移均为零,即:1 9 1 .y(L) = O/(L) = O,分别将此边界条件代入微分及
11、积分方程,可以得到:C = 产,。=pr,于是该梁 23的转角方程以及挠度方程分别为:y(X)=L(!尸/一!尸片一?电3),挠曲线形状如下图,乂的及8均发生在自由锻处,即X=0代入转EI7 623角方程以及挠度方程:角方程以及挠度方程:pymax = y()=一-( t)盘 ax =伙0)=-PI:2EI7(10-5)静不定梁AB,载荷P、长度。、3a Q以及横截面抗弯刚度以二。求:支座C的反力。13.5Pa3A9a,A + LIz RA怒勿一(10-6):梁及拉杆结构如下图,小。,3。为。A怒勿一(10-6):梁及拉杆结构如下图,小。,3。为。梁的抗弯刚度为EI,拉杆的抗拉刚度为EAo固定
12、较杆品的经技反力分别为)杆品的经技反力分别为)杆品的经技反力分别为)R /A =4qa/3 及 R 80 =8qa/3Pjcy(x) = = (3/_x)6 7求:建立梁的挠曲线微分方程、转角方程及挠度方程。并写出:梁的边界位移条件。.aRbd(注意:不需要求解出积分常数!)答:EIy(x1) = RAx1-qx?(10-7)什么是静不定梁??为减小梁的位移,提高梁的强度,或者由于结构自它毒贰 卜迪上曾艇根施辗增添支承,使之变成静不定梁。B q(10-8)”是什么?”第十一章应力状态与强度理论(9题)(11-1):受力构件内某点的原始单元体应力如图示。单位:MPa求:(1)指定斜面应力;(2)
13、主应力;(3)主平面方位;(4)画出主单元体。答:(11-2)受力构件内某点的平面应力状态如图示。试求主应力、主平面方向角及最大剪应力。解答提示:20MPa由11. 3式可得非零主应力值为:因为是平面应力状态,有一个主应力为零,故三个主应力分别为:=62 36MPa , a2 = VI .(AMPa , % = 0又由IL 4式可得主平面方位角为:tga.n4 =-31.72由 11. 6 式可得最大剪应力为:rm.lx = - J(7v-crv)2+4rvv2 =31.1 SMPainxay 、 人yz人)(11-3)写出主应力及最大剪应力。30303010(11-4)写出主应本及最大剪应力
14、。(11-5)为4力状态?10过一点,不能分析解释一些现象,(11-6)什么是主应力、主平面?电的应力,一般是不相同的所斗要分柝=耳的应力状态。11-4 题在应力状态中,存在着某一个方位面,在这个面上,剪应力等于零。这样的面称为“主平面”,主平面上 的正应力称为“主应力”。(11-7)什么是强度理论?所谓强度理论,就是关于材料在不同应力状态下失效的共同原因的各种假设。根据这些假设,就有可能利 用单向拉伸的实验结果,建立材料在复杂应力状态下的失效判据以及轻度计算准那么。(11-8)常用的强度理论有哪几个?常用的强度理论有:(1)最大拉应力理论一一第一强度理论;(2)最大剪应力理论第三强度理论;(
15、3) 以应变为判据的即最大拉应变理论一一第二强度理论;(4)以能量为判据即形状改变比能理论一一第四强度理 论;(11-9)写出常用的强度理论的相当应力。第十二章组合变形(10题)(12-1):实心圆截面轴,两端承受弯矩M和扭矩T的联合作用,轴的转速n=100 r/min,传递Np=10马 力,弯矩M=200 Nmo许用应力。=6 0 Mpa。试求:按第三强度理论确定轴的直径d ONT同时由书中公式知:T = 7.02x= 0.702KN - m ; Tmax =亳钱链支嶂%可动较链支座,c为中间较链连接。 45。赢足寸如舅福示、白固定端约束,试画出刚架受力Fcb c; XFde ;Dj i i
16、 ”!.士卫;_l / amK J1YA提示:首先把两个皮带拉力向圆心平移,明确组合变形种类。解题提示:2P首先将矩,根据学,/,疗/以7/方在轮心的D合力偶m=FD/2,由于作用在轴上的扭转外力m = 9.- = 9.5n5x 逛 =08QO.105KNm,而:m = 2(2P-P)nP = Q84KN,。+2P = 2.52KN,简化后的受力简图。由其中的受力分析可知截面处的最大弯矩,即危险截面的弯矩为:Mimx =3Px/ = 2.52x 0.12 = 0.3024KN 相,其上扭矩为0.105KN. m,按照第三强度理论有:I j 3必户四一+矛=仙3。242 +。52 =0.32KN
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程力学 综合 复习资料
限制150内