高一数学人教A版必修1教案:第一章第一节集合第一课时(9页).doc
《高一数学人教A版必修1教案:第一章第一节集合第一课时(9页).doc》由会员分享,可在线阅读,更多相关《高一数学人教A版必修1教案:第一章第一节集合第一课时(9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-高一数学人教A版必修1教案:第一章第一节集合第一课时-第 9 页第一章第一节集合第一课时通过本章的学习,使学生会使用最基本的集合语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,
2、培养学生的抽象概括能力,提高学生应用数学的意识课本力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律教学中要高度重视数学概念的背景教学课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中在例题和习题的编排中,渗透了分类讨论思
3、想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性在教学中,要坚持循序渐进,逐步渗透数形结合、分类讨论这方面的训练对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握
4、这方面的要求,防止拔高教学重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍本章教学时间约需14课时,具体分配如下(仅供参考):1.1.1集合的含义与表示约1课时1.1.2集合间的基本关系约1课时1.1.3集合的基本运算约2课时1.2.1函数的概念约2课时1.2.2函数的表示法约3课时1.3.1单调性与最大(小)值约2课时1.3.2奇偶性约1课时实习作业约1课时本章复习约1课时教学分析集合语言是现代数学的基本语言,同时也是一种抽象的数学语言教材将集合的初步知
5、识作为初、高中数学课程的衔接,既体现出集合在高中数学课程中举足轻重的作用,又体现出集合在数学中的奠基性地位课本除了从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义、性质、表示方法之外,还特别注意渗透了“概括”与“类比”这两种常用的逻辑思考方法因此,建议教学时,应引导学生从大量的实例中概括出集合的含义;多创设让学生运用集合语言进行表达和交流的情境和机会,以便学生在实际应用中逐渐熟悉自然语言、集合语言和图形语言各自的特点和表示方法,能进行相互转换并且灵活应用,充分掌握集合语言与此同时,本小节作为高一数学教学的第一节新授课,知识体系中的新概念、新符号较多,建议教学时
6、先引导学生阅读课本,然后进行交流、讨论,让学生在阅读与交流中理解概念并熟悉新符号的使用这样,既能够培养学生自我阅读、共同探究的能力,又能提高学生主动学习、合作交流的精神三维目标1了解集合含义;理解元素与集合“属于”关系;熟记常用数集专用符号2深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题3能选择不同的形式表示具体的问题中的集合重点难点教学重点:集合的基本概念与表示方法教学难点:选择适当的方法表示具体问题中的集合课时安排1课时导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一
7、(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱思路2.你经常会谈论你的家庭,你的班级其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就
8、是本节课我们所要学习的内容思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题”推进新课 中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成? 全体自然数能否构成一个集合?如果能,这个集合由什么组成? 方程x2-3x+2=0的所有实数根能否构成一个集合?如果能
9、,这个集合由什么组成? 你能否根据上述几个问题总结出集合的含义?讨论结果:能这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集能这个集合由0、1、2、3、等无限个元素组成,称为无限集能这个集合由1、2两个数组成我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题近视超过300度的同学能否构成一个集合?“眼神很差”的同学能否构成一个集合?比较问题,说明集合中的元素具有什么性质?我们知道冬虫夏草既是一种植物,又是一种动物那么在所有动植物构成的集合中,冬虫夏草出现的次数是一
10、次呢还是两次?组成英文单词every的字母构成的集合含有几个元素?分别是什么?问题说明集合中的元素具有什么性质?在玩斗地主的时候,我们都知道3、4、5、6、7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5、3、6、7、4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3、4、5、6、7,另外一个集合中的元素是5、3、6、7、4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:能不能确定性问题对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知因此通过问题我们了解到,
11、对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性一次4个元素e、v、r、y这四个字母互异性一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现是元素相同集合相同体现集合中元素的无序性,即集合中的元素的排列是没有顺序的只要构成两个集合的元素是一样的,我们就称这两个集合是相等的如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素“和集合A、B分别有着怎样的关系?大家能否从问题中总结出元素与集合的关系?A表示“120内的所有质数”组成的集合,那么3_A,4_A.讨论结果:a是集合B中的元
12、素,a不是集合A中的元素a是集合B中的元素,就说a属于集合B,记作aB;a不是集合A中的元素,就说a不属于集合A,记作aA.因此元素与集合的关系有两种,即属于和不属于3A,4A. 从这堂课的开始到现在,你们注意到了我用了几种方法表示集合? 字母表示法中有哪些专用符号? 除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么? 列举法的含义是什么?你能否运用列举法表示一些集合?请举例! 能用列举法把下列集合表示出来吗? ()小于10的质数; ()不等式x-25的解集. 描述法的含义是什么?你能否运用描述法表示一些集合?请举例! 集合的表示方法共有几种?讨论结果:两种,自
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一数 学人 必修 教案 第一章 第一节 集合 第一 课时
限制150内