通信类英文文献及翻译(10页).doc
《通信类英文文献及翻译(10页).doc》由会员分享,可在线阅读,更多相关《通信类英文文献及翻译(10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-通信类英文文献及翻译-第 9 页姓名:刘峻霖 班级:通信143班学号:2014101108附 录一、英文原文:Detecting Anomaly Trafc using Flow Data in the real VoIP networkI. INTRODUCTIONRecently, many SIP3/RTP4-based VoIP applications and services have appeared and their penetration ratio is gradually increasing due to the free or cheap call charge
2、and the easy subscription method. Thus, some of the subscribers to the PSTN service tend to change their home telephone services to VoIP products. For example, companies in Korea such as LG Dacom, Samsung Net- works, and KT have begun to deploy SIP/RTP-based VoIP services. It is reported that more t
3、han ve million users have subscribed the commercial VoIP services and 50% of all the users are joined in 2009 in Korea 1. According to IDC, it is expected that the number of VoIP users in US will increase to 27 millions in 2009 2. Hence, as the VoIP service becomes popular, it is not surprising that
4、 a lot of VoIP anomaly trafc has been already known 5. So, Most commercial service such as VoIP services should provide essential security functions regarding privacy, authentication, integrity and non-repudiation for preventing malicious trafc. Particu- larly, most of current SIP/RTP-based VoIP ser
5、vices supply the minimal security function related with authentication. Though secure transport-layer protocols such as Transport Layer Security (TLS) 6 or Secure RTP (SRTP) 7 have been standardized, they have not been fully implemented and deployed in current VoIP applications because of the overhe
6、ads of implementation and performance. Thus, un-encrypted VoIP packets could be easily sniffed and forged, especially in wireless LANs. In spite of authentication,the authentication keys such as MD5 in the SIP header could be maliciously exploited, because SIP is a text-based protocol and unencrypte
7、d SIP packets are easily decoded. Therefore, VoIP services are very vulnerable to attacks exploiting SIP and RTP. We aim at proposing a VoIP anomaly trafc detection method using the ow-based trafc measurement archi-tecture. We consider three representative VoIP anomalies called CANCEL, BYE Denial of
8、 Service (DoS) and RTP ooding attacks in this paper, because we found that malicious users in wireless LAN could easily perform these attacks in the real VoIP network. For monitoring VoIP packets, we employ the IETF IP Flow Information eXport (IPFIX) 9 standard that is based on NetFlow v9. This traf
9、c measurement method provides a exible and extensible template structure for various protocols, which is useful for observing SIP/RTP ows 10. In order to capture and export VoIP packets into IPFIX ows, we dene two additional IPFIX templates for SIP and RTP ows. Furthermore, we add four IPFIX elds to
10、 observe 802.11 packets which are necessary to detect VoIP source spoong attacks in WLANs.II. RELATED WORK8 proposed a ooding detection method by the Hellinger Distance (HD) concept. In 8, they have pre- sented INVITE, SYN and RTP ooding detection meth-ods. The HD is the difference value between a t
11、raining data set and a testing data set. The training data set collected trafc over n sampling period of duration t.The testing data set collected trafc next the training data set in the same period. If the HD is close to 1, this testing data set is regarded as anomaly trafc. For using this method,
12、they assumed that initial training data set did not have any anomaly trafc. Since this method was based on packet counts, it might not easily extended to detect other anomaly trafc except ooding. On the other hand, 11 has proposed a VoIP anomaly trafc detection method using Extended Finite State Mac
13、hine (EFSM). 11 has suggested INVITE ooding, BYE DoS anomaly trafc and media spamming detection methods. However, the state machine required more memory because it had to maintain each ow. 13 has presented NetFlow-based VoIP anomaly detection methods for INVITE, REGIS-TER, RTP ooding, and REGISTER/I
14、NVITE scan. How-ever, the VoIP DoS attacks considered in this paper were not considered. In 14, an IDS approach to detect SIP anomalies was developed, but only simulation results are presented. For monitoring VoIP trafc, SIPFIX 10 has been proposed as an IPFIX extension. The key ideas of the SIPFIX
15、are application-layer inspection and SDP analysis for carrying media session information. Yet, this paper presents only the possibility of applying SIPFIX to DoS anomaly trafc detection and prevention. We described the preliminary idea of detecting VoIP anomaly trafc in 15. This paper elaborates BYE
16、 DoS anomaly trafc and RTP ooding anomaly trafc detec-tion method based on IPFIX. Based on 15, we have considered SIP and RTP anomaly trafc generated in wireless LAN. In this case, it is possible to generate the similiar anomaly trafc with normal VoIP trafc, because attackers can easily extract norm
17、al user information from unencrypted VoIP packets. In this paper, we have extended the idea with additional SIP detection methods using information of wireless LAN packets. Furthermore, we have shown the real experiment results at the commercial VoIP network.III. THE VOIP ANOMALY TRAFFIC DETECTION M
18、ETHODA. CANCEL DoS Anomaly Trafc Detection As the SIP INVITE message is not usually encrypted, attackers could extract elds necessary to reproduce the forged SIP CANCEL message by snifng SIP INVITE packets, especially in wireless LANs. Thus, we cannot tell the difference between the normal SIP CANCE
19、L message and the replicated one, because the faked CANCEL packet includes the normal elds inferred from the SIP INVITE message. The attacker will perform the SIP CANCEL DoS attack at the same wireless LAN, because the purpose of the SIP CANCEL attack is to prevent the normal call estab-lishment whe
20、n a victim is waiting for calls. Therefore, as soon as the attacker catches a call invitation message for a victim, it will send a SIP CANCEL message, which makes the call establishment failed. We have generated faked SIP CANCEL message using sniffed a SIP INVITE message.Fields in SIP header of this
21、 CANCEL message is the same as normal SIP CANCEL message, because the attacker can obtain the SIP header eld from unencrypted normal SIP message in wireless LAN environment. Therefore it is impossible to detect the CANCEL DoS anomaly trafc using SIP headers, we use the different values of the wirele
22、ss LAN frame. That is, the sequence number in the 802.11 frame will tell the difference between a victim host and an attacker. We look into source MAC address and sequence number in the 802.11 MAC frame including a SIP CANCEL message as shown in Algorithm 1. We compare the source MAC address of SIP
23、CANCEL packets with that of the previously saved SIP INVITE ow. If the source MAC address of a SIP CANCEL ow is changed, it will be highly probable that the CANCEL packet is generated by a unknown user. However, the source MAC address could be spoofed. Regarding 802.11 source spoong detection, we em
24、ploy the method in 12 that uses sequence numbers of 802.11 frames. We calculate the gap between n-th and (n-1)-th 802.11 frames. As the sequence number eld in a 802.11 MAC header uses 12 bits, it varies from 0 to 4095. When we nd that the sequence number gap between a single SIP ow is greater than t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通信 英文 文献 翻译 10
限制150内