第4章 非线性方程求根.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第4章 非线性方程求根.ppt》由会员分享,可在线阅读,更多相关《第4章 非线性方程求根.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第4章 非线性方程求根,非线性科学是当今科学发展的一个重要研究方向,而非线性方程的求根也成了一个不可缺的内容。但是,非线性方程的求根非常复杂。,通常非线性方程的根的情况非常复杂:,无穷组解,所以,只在某个区域内可能解存在唯一,而且经常很简单的形式得不到精确解:,因此,通常我们用迭代法解非线性方程,看迭代法之前,先看看一种简单直观的方法,原理:,4.1对分法,x1,x2,a,b,什么时候停止?,或,x*,While(|a-b|eps) x=(a+b)/2 f(x) 若(|f(x)|eps) return x / x为解 若f(x)*f(b)0 a=x /修正区间为x,b 若f(a)*f(x)0
2、b=x /修正区间为a,x End while,每次缩小一倍的区间,收敛速度为1/2,较慢,且只能求一个根,使用条件限制较大,算法,2,不能保证 x 的精度,4.2 迭代法,f (x) = 0,x = g (x),f (x) 的根,g (x) 的不动点,思路,从一个初值 x0 出发,计算 x1 = g(x0), x2 = g(x1), , xk+1 = g(xk), 若 收敛,即存在 x* 使得 ,且 g 连续,则由 可知 x* = g(x* ),即x* 是 g 的不动点,也就是f 的根。,迭代法的基本步骤如下:,1、给出方程的局部等价形式,2、取合适的初值,产生迭代序列,3、求极限,易知,该
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第4章 非线性方程求根 非线性 方程 求根
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内