中考数学精品文档——解题方法及提分突破训练:面积法专题.docx
《中考数学精品文档——解题方法及提分突破训练:面积法专题.docx》由会员分享,可在线阅读,更多相关《中考数学精品文档——解题方法及提分突破训练:面积法专题.docx(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解题方法及提分突破训练:面积法专题用面积法解几何问题是一种重要的数学方法,在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。 一真题链接1.圆柱的底面周长为2,高为1,则圆柱的侧面展开图的面积为 22.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OABC与矩形OABC关于点O位似,且矩形OABC的面积等于矩形OABC面积的 ,那么点B的坐标是()A. (-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,3)或(2,-3)3如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为cm
2、4.如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连接EC、BD(1)求证:ABDACE;(2)若BEC与BDC的面积相等,试判定三角形ABC的形状5.(2012宜宾)如图,在四边形ABCD中,DCAB,CBAB,AB=AD,CD= ,AB,点E、F分别为AB、AD的中点,则AEF与多边形BCDFE的面积之比为()A. B. C. D.二 名词释义平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一
3、种常用方法。用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。面积问题主要涉及以下两部分内容:(一)怎样证明面积相等。以下是常用的理论依据1.三角形的中线把三角形分成两个面积相等的部分。2.同底同高或等底等高的两个三角形面积相等。3.平行四边形的对角线把其分成两个面积相等的部分。4.同底(等底)的两个三角形面积的比等于高的比。同高(或等高)的两个三角形面积的比等于底的比。5.三角形的面积等于
4、等底等高的平行四边形的面积的一半。6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。(二)用面积法解几何问题(常用的解题思路)1.分解法:通常把一个复杂的图形,分解成几个三角形。2.作平行线法:通过平行线找出同高(或等高)的三角形。3.利用有关性质法:比如利用中点、中位线等的性质。4.还可以利用面积解决其它问题。 三 典题示例(一)怎样证明面积问题 1. 分解法 例1. 从ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:
5、DEF的面积2ABC的面积。 分析:从图形上观察,DEF可分为三部分,其中是ADE,它与ADB同底等 三是AEF,只要再证出它与ABC的面积相等即可 由SCFESCFB 故可得出SAEFSABC 证明:AD/BE/CF ADB和ADE同底等高 SADBSADE 同理可证:SADCSADF SABCSADE+SADF 又SCEFSCBF SABCSAEF SAEF+SADE+SADF2SABC SDEF2SABC 2. 作平行线法 例2. 已知:在梯形ABCD中,DC/AB,M为腰BC上的中点 分析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为其中位线,再利用平行线间的距离相等,设梯形
6、的高为h 证明:过M作MN/AB M为腰BC的中点 MN是梯形的中位线 设梯形的高为h (二)用面积法解几何问题1. 用面积法证线段相等 例1. 已知:如图1,AD是ABC的中线,CFAD于F,BEAD交AD的延长线于E。求证:CF=BE。图1证明:连结EC,由BD=DC得,两式两边分别相加,得故所以BE=CF。注:直接由得更简洁。2. 用面积法证两角相等 例2. 如图2,C是线段AB上的一点,ACD、BCE都是等边三角形,AE、BD相交于O。求证:AOC=BOC。图2证明:过点C作CPAE,CQBD,垂足分别为P、Q。因为ACD、BCE都是等边三角形,所以AC=CD,CE=CB,ACD=BC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 精品 文档 解题 方法 突破 训练 面积 专题
限制150内