《幂函数优秀课件.ppt》由会员分享,可在线阅读,更多相关《幂函数优秀课件.ppt(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于幂函数优秀第1页,此课件共20页哦学习目标学习目标 1、掌握幂函数的概念、掌握幂函数的概念。熟悉熟悉 时,时,幂函数的图像和性质幂函数的图像和性质。2、能利用幂函数的性质来解决一些实际问题、能利用幂函数的性质来解决一些实际问题 3、通过对情景的观察、思考、归纳、总结形成结、通过对情景的观察、思考、归纳、总结形成结论,培养发现问题、解决问题的能力论,培养发现问题、解决问题的能力。重点重点:从五个具体幂函数中认识幂函数的一些性质从五个具体幂函数中认识幂函数的一些性质.难点难点:画五个幂函数的图象并由图象概括其性质画五个幂函数的图象并由图象概括其性质.11,2,3,12()yxR第2页,此课件共
2、20页哦问题引入问题引入(1)如果张红购买了每千克如果张红购买了每千克1元的蔬菜元的蔬菜w千克千克,那么她需那么她需要支付要支付p=w元元,这里这里p是是w的函数的函数;(2)如果正方形的边长为如果正方形的边长为a,那么正方形的面积那么正方形的面积 这里这里S是是a的函数的函数;(3)如果立方体的边长为如果立方体的边长为a,那么立方体的体积那么立方体的体积 ,这里这里V是是a函数函数;(4)如果一个正方形场地的面积为如果一个正方形场地的面积为S,那么这个正方形的那么这个正方形的边长边长 这里这里a是是S的函数的函数;(5)如果某人如果某人ts内骑车行进了内骑车行进了1km,那么他骑车的平均速那
3、么他骑车的平均速度度 这里这里v是是t的函数的函数.2Sa我们先看几个具体问题:3Va12as,/1skmvt 若将它们的自变量全部用若将它们的自变量全部用x来表示来表示,函数值用函数值用y来来表示表示,则它们的函数关系式将是则它们的函数关系式将是:xy xy2xy3xy21xy1xy第3页,此课件共20页哦一般地,函数叫做一般地,函数叫做幂函数幂函数(power function),其中其中x x为自变量,为常数。为自变量,为常数。yx几点说明几点说明:3、幂函数中的幂函数中的 可以为任意实数可以为任意实数.一一、11,.2.yxx、中前面的系数为 并且后面没有 常数项、定义域没有固定,与
4、的值有关第4页,此课件共20页哦幂函数与指数函数的区别:(1)幂函数)幂函数 中的中的指数指数 为任意实数为任意实数。而。而指数函数指数函数 中的中的底数底数a为大于为大于0且不等于且不等于1的常数。的常数。(2)只有形如)只有形如 的函数才叫做幂函数的函数才叫做幂函数)(Rxy)(Rxy)1,0(aaayx第5页,此课件共20页哦判断下列函数是否为幂函数判断下列函数是否为幂函数.(1)y=x4 21)2(xy(3)y=-xe 21)4(xy(5)y=2x2(6)y=x3+2 判一判xy1)8(x-1)2)7(y=第6页,此课件共20页哦21312,xyxyxyxyxyxy o12-1-212
5、-1-22xy o-11231-1xyxy1 xyxy1 2-2 -1 -121二二、我们、我们重点研究重点研究:o 对于我们较熟悉的这三类函数的图象只需找对于我们较熟悉的这三类函数的图象只需找关键点关键点 来作图来作图。第7页,此课件共20页哦xy3xy oxy21xy o112-1-211-1-1-2-2-121xy x21xy 234615.001271.041.173.145.20描点法作图描点法作图-1-1x3xy 5.138.35.005.015.1 13.0013.038.3 1 3xy 第8页,此课件共20页哦名称名称图象图象定义域定义域 值域值域 奇偶性奇偶性单调性单调性 x
6、y Oxy11xy-1-1Oxy11-1-12xyOxy11-1-13xy Oxy11-1-1RRR0,+)奇函数奇函数偶函数奇函数奇函数非奇非偶函数奇函数奇函数(0,+)(-,0)(-,+)(-,+)0,+)(-,0)(0,+)1 xyOxy11-1-1(-,0)(0,+)21xy R 0,+)0,+)(-,0)(0,+)R第9页,此课件共20页哦xy 在同一平面直角坐在同一平面直角坐标系内作出幂函数标系内作出幂函数的图象的图象.Oy=x2xy3xy 21xy 1xy12132,xyxyxyxyxy111100()(1)第10页,此课件共20页哦归纳归纳幂函数图象在第一象限的分布情况:幂函数
7、图象在第一象限的分布情况:101y11010 x第11页,此课件共20页哦(1)所有的幂函数图象恒过所有的幂函数图象恒过点点(1,1);(2),在第一象限内,在第一象限内递增递增;若;若 ,在第一象限内,在第一象限内递减递减.1xyo1101 01(4)1时,图象时,图象下下凸凸;当当0 1时,图象时,图象上上凸凸(5)图像不过第图像不过第四四象限象限.(6)第一象限内第一象限内,当当x1时时,越大越大图象图象越高越高(3)当当 为奇数为奇数时,幂函数为时,幂函数为奇函数奇函数;当当 为偶数为偶数时,幂函数为时,幂函数为偶函数偶函数第12页,此课件共20页哦下列哪些说法是正确的?1.幂函数均过
8、定点(幂函数均过定点(1,1););2.幂函数幂函数 在(在(-,0)上单调递减,)上单调递减,在(在(0,+)上也单调递减)上也单调递减,因此幂函数因此幂函数 在定义域内单调递减;在定义域内单调递减;3.幂函数的图象均在两个象限出现;幂函数的图象均在两个象限出现;4.幂函数在第四象限可以有图象;幂函数在第四象限可以有图象;5.当当 0时,幂函数在第一象限均为增时,幂函数在第一象限均为增函数;函数;正确正确1 xy1 xy不正确不正确不正确不正确不正确不正确正确正确随堂练习随堂练习第13页,此课件共20页哦例1:比较下列各题中两数值的大小 1.73,1.83 0.8-1,0.9-1幂函数幂函数
9、y=y=x-1-1在在(0,+(0,+)上是单调减函数)上是单调减函数.解:解:幂函数幂函数y=y=x3 在在R R上是单调增函数。上是单调增函数。又又1.71.81.71.81.71.73 31.81.83 3又又0.80.8 0.9 0.9-1-1第14页,此课件共20页哦拓展拓展:比较下列两个代数式值的大小比较下列两个代数式值的大小:解:(1)考察幂函数 在区间0,+)上单调增 函数.因为 所以 (2)考察幂函数 在区间(0,+)上是单调减函数.因为 所以32 xy5.1xy aa15.15.1)1(aa222a323222)2(a32325.15.12,)2)(2(;,)1)(1(a2
10、 aa第15页,此课件共20页哦证明幂函数证明幂函数 在在0,+)上是增函数)上是增函数.()f xx用定义证明函数的单调性的步骤用定义证明函数的单调性的步骤:(1).取数取数:设设x1,x2是某个区间上任意二值,且是某个区间上任意二值,且x1x2;(2).作差作差:f(x1)f(x2),(3)变形变形:(4).判断判断 f(x1)f(x2)的符号;的符号;(5).下结论下结论.第16页,此课件共20页哦证明:任取证明:任取x1,x2 0,+),且,且x1x2,则,则 )()(2121xxxfxf )(212121xxxxxx2121 xxxx注意注意:若给出的函数是有根号的式子若给出的函数是
11、有根号的式子,往往往往 采用有理化的方式。采用有理化的方式。.),0)(上是上是增增函数函数在在所以幂函数所以幂函数xx f)()(,0,0212121xfxfxxxx 所以因为第17页,此课件共20页哦练习1:设a=0.20.3,b=0.30.3,c=0.30.2,则()A.abc B.abcC.acb D.bac巩固练习巩固练习分析:比较a,b的大小,需利用幂函数y=xy=x0.30.3的单调性;比较b,c的大小,需利用指数函数y=0.3y=0.3x x的单调性。B第18页,此课件共20页哦1122(4)(32)mm练 习 2:若,求 m 的 取 值 范 围.练习练习3:如果函数如果函数f(x)=(m2m1)xm是幂函数是幂函数,且在区间(,且在区间(0,+)上是减函数,求满足条)上是减函数,求满足条件的实数件的实数m的值。的值。变式训练:变式训练:如果幂函数如果幂函数f(x)=xm2-2m-3在区间(在区间(0,+)上是减函数,求满足条件的实数)上是减函数,求满足条件的实数m的集的集合。合。第19页,此课件共20页哦感谢大家观看感谢大家观看第20页,此课件共20页哦
限制150内