平面向量的基本定理及坐标表示课时讲稿.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《平面向量的基本定理及坐标表示课时讲稿.ppt》由会员分享,可在线阅读,更多相关《平面向量的基本定理及坐标表示课时讲稿.ppt(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于平面向量的基本定理及坐标表示课时第一页,讲稿共四十二页哦问题提出问题提出t57301p2 1.1.向量加法与减法有哪几种几何运算法则向量加法与减法有哪几种几何运算法则?2.2.怎样理解向量的数乘运算怎样理解向量的数乘运算a?(1 1)|a a|=|=|a a|;(2 2)0 0时,时,a与与a方向相同;方向相同;0 0时,时,a与与a方向相反;方向相反;=0=0时,时,a=0.=0.第二页,讲稿共四十二页哦3.3.平面向量共线定理是什么?平面向量共线定理是什么?4.4.如图,光滑斜面上一个木块受到的重如图,光滑斜面上一个木块受到的重力为力为G G,下滑力为,下滑力为F F1 1,木块对斜面
2、的压,木块对斜面的压力为力为F F2 2,这三个力的方向分别如何?,这三个力的方向分别如何?三者有何相互关系?三者有何相互关系?G GF F1 1F F2 2非零向量非零向量a与向量与向量b共线共线 存在唯存在唯一实数一实数,使,使ba.第三页,讲稿共四十二页哦5.5.在物理中,力是一个向量,力的合成在物理中,力是一个向量,力的合成就是向量的加法运算就是向量的加法运算.力也可以分解,任力也可以分解,任何一个大小不为零的力,都可以分解成两个何一个大小不为零的力,都可以分解成两个不同方向的分力之和不同方向的分力之和.将这种力的分解拓展将这种力的分解拓展到向量中来,就会形成一个新的数学理论到向量中来
3、,就会形成一个新的数学理论.第四页,讲稿共四十二页哦第五页,讲稿共四十二页哦探究(一):探究(一):平面向量基本定理平面向量基本定理 思考思考1 1:给定平面内任意两个向量给定平面内任意两个向量e1 1,e2 2,如何求作向量如何求作向量3 3e1 12 2e2 2和和e1 12 2e2 2?e1 1e2 22 2e2 2B BC CO O3 3e1 1A Ae1 1D D3 3e1 12 2e2 2e1 1-2-2e2 2第六页,讲稿共四十二页哦思考思考2 2:如图,设如图,设OAOA,OBOB,OCOC为三条共点射为三条共点射线,线,P P为为OCOC上一点,能否在上一点,能否在OAOA、
4、OBOB上分别找上分别找一点一点M M、N N,使四边形,使四边形OMPNOMPN为平行四边形?为平行四边形?M MN NO OA AB BC CP P第七页,讲稿共四十二页哦思考思考3 3:在下列两图中,向量在下列两图中,向量不共线,能否在直线不共线,能否在直线OAOA、OBOB上分别找一点上分别找一点M M、N N,使,使?OA,OB,OC O MO NO C+=uuuruuu ruuu rO OA AB BC CM MN NO OA AB BC CM MN N第八页,讲稿共四十二页哦思考思考4 4:在上图中,设在上图中,设 =e1 1,=e2 2,=a,则向量,则向量 分别与分别与e1
5、1,e2 2的关的关系如何?从而向量系如何?从而向量a与与e1 1,e2 2的关系如何的关系如何?OAOB OC OM,ON 1 12 2.aeeO OA AB BC CM MN NO OA AB BC CM MN N1 12 2OM,ON.ee 第九页,讲稿共四十二页哦O M=uuurO N=uuu r1 1221 122OMe,ONe,aee 思考思考5 5:若上述向量若上述向量e1 1,e2 2,a都为定向量,都为定向量,且且e1 1,e2 2不共线,则实数不共线,则实数1 1,2 2是否存在?是是否存在?是否唯一?否唯一?O OA AB BC CM MN NO OA AB BC CM
6、MN N第十页,讲稿共四十二页哦思考思考6 6:若向量若向量a与与e1 1或或e2 2共线,共线,a还能用还能用1 1e1 12 2e2 2表示吗?表示吗?e1 1aa=1 1e1 1+0+0e2 2e2 2aa=0 0e1 1+2 2e2 2第十一页,讲稿共四十二页哦思考思考7 7:根据上述分析,平面内任一向量根据上述分析,平面内任一向量a都都可以由这个平面内两个不共线的向量可以由这个平面内两个不共线的向量e1 1,e2 2表示出来,从而可形成一个定理表示出来,从而可形成一个定理.你能完整你能完整地描述这个定理的内容吗?地描述这个定理的内容吗?若若e1 1、e2 2是同一平面内的两个不共线向
7、量,则对是同一平面内的两个不共线向量,则对于这一平面内的任意向量于这一平面内的任意向量a,有且只有一对实数,有且只有一对实数1 1,2 2,使,使a1e12e2.第十二页,讲稿共四十二页哦思考思考8 8:上述定理称为上述定理称为平面向量基本定理平面向量基本定理,不共线向量不共线向量e1,e2叫做表示这一平面内所有叫做表示这一平面内所有向量的一组向量的一组基底基底.那么同一平面内可以作那么同一平面内可以作基底的向量有多少组?不同基底对应向量基底的向量有多少组?不同基底对应向量a的表示式是否相同?的表示式是否相同?若若e1 1、e2 2是同一平面内的两个不共线向量,则对是同一平面内的两个不共线向量
8、,则对于这一平面内的任意向量于这一平面内的任意向量a,有且只有一对实数,有且只有一对实数1 1,2 2,使,使a1e12e2.第十三页,讲稿共四十二页哦探究探究(二二):):平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 00,180180 思考思考1 1:不共线的向量有不同的方向,对不共线的向量有不同的方向,对于两个非零向量于两个非零向量a和和b,作,作 a,b,如图如图.为了反映这两个向量的位置关系,为了反映这两个向量的位置关系,称称AOBAOB为向量为向量a与与b的的夹角夹角.你认为向量你认为向量的夹角的取值范围应如何约定为宜?的夹角的取值范围应如何约定为宜?OAOB baab
9、A AB BO O第十四页,讲稿共四十二页哦思考思考2 2:如果向量如果向量a与与b的夹角是的夹角是9090,则称,则称向量向量a与与b垂直垂直,记作,记作ab.互相垂直的两个互相垂直的两个向量能否作为平面内所有向量的一组基底?向量能否作为平面内所有向量的一组基底?ba第十五页,讲稿共四十二页哦思考思考3 3:把一个向量分解为两个互相垂直的向把一个向量分解为两个互相垂直的向量,叫做把向量量,叫做把向量正交分解正交分解.如图,向量如图,向量i、j是两个互相垂直的单位向量,向量是两个互相垂直的单位向量,向量a与与i的夹的夹角是角是3030,且,且|a|=4|=4,以向量,以向量i、j为基底,为基底
10、,向量向量a如何表示?如何表示?B BaiO OjA AP P2 32aij第十六页,讲稿共四十二页哦思考思考4 4:在平面直角坐标系中,分别取与在平面直角坐标系中,分别取与x x轴、轴、y y轴轴方向相同的两个单位向量方向相同的两个单位向量i、j作为基底,对于平作为基底,对于平面内的一个向量面内的一个向量a,由平面向量基本定理知,有,由平面向量基本定理知,有且只有一对实数且只有一对实数x x、y y,使得,使得 ax xiy yj.我们把我们把有序数对(有序数对(x x,y y)叫做向量)叫做向量a的坐标,记作的坐标,记作a(x(x,y).y).其中其中x x叫做叫做a在在x x轴上的坐标,
11、轴上的坐标,y y叫做叫做a在在y y轴轴上的坐标,上式叫做向量上的坐标,上式叫做向量的的坐标表示坐标表示.那么那么x x、y y的的几何意义如何?几何意义如何?aix xy yO Ojx xy y第十七页,讲稿共四十二页哦思考思考5 5:相等向量的坐标必然相等,作向相等向量的坐标必然相等,作向量量 a,则,则 (x(x,y)y),此时点,此时点A A是坐是坐标是什么?标是什么?OA OA A Aaix xy yO OjA(x,y)A(x,y)第十八页,讲稿共四十二页哦理论迁移理论迁移 例例1 1 如图,已知向量如图,已知向量e1 1、e2 2,求作向量,求作向量2.52.5e1 13 3e2
12、 2.e1e2C CO OA A2.52.5e1 1B B3 3e2 2第十九页,讲稿共四十二页哦例例2 2 如图,写出向量如图,写出向量a,b,c,d的坐标的坐标.2452abcd4 252xyOa=(2,3)=(2,3)b=(-2,3)=(-2,3)c=(-2,-3)=(-2,-3)d=(2,-3)=(2,-3)第二十页,讲稿共四十二页哦AB 例例3 3 如图,在平行四边形如图,在平行四边形ABCDABCD中,中,=a,=b,E E、M M分别是分别是ADAD、DCDC的中点,的中点,点点F F在在BCBC上,且上,且BC=3BFBC=3BF,以,以a,b为基底分为基底分别表示向量别表示向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 基本 定理 坐标 表示 课时 讲稿
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内