勾股定理经典例题(含参考答案)(11页).doc
《勾股定理经典例题(含参考答案)(11页).doc》由会员分享,可在线阅读,更多相关《勾股定理经典例题(含参考答案)(11页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-勾股定理经典例题(含参考答案)-第 11 页勾股定理经典例题透析类型一:勾股定理的直接用法1、在RtABC中,C=90(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。解析:(1)在ABC中,C=90,a=6,c=10,b=(2)在ABC中,C=90,a=40,b=9,c=(3)在ABC中,C=90,c=25,b=15,a=举一反三【变式】如图B=ACD=90,AD=13,CD=12,BC=3,则AB的长是多少?【答案】ACD=90AD=13,CD=12AC2
2、=AD2CD2=132122=25AC=5又ABC=90且BC=3由勾股定理可得AB2=AC2BC2=5232=16AB=4AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,.求BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,(的两个锐角互余)(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.举一反三【变式1】如图,已知:,于P.求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.又(已知),.在中,根据勾股定理
3、有,.【变式2】已知:如图,B=D=90,A=60,AB=4,CD=2。求:四边形ABCD的面积。分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。解析:延长AD、BC交于E。A=60,B=90,E=30。AE=2AB=8,CE=2CD=4,BE2=AE2-AB2=82-42=48,BE=。DE2=CE2-CD2=42-22=12,DE=。S四边形ABCD=SABE-SCDE=ABBE-CDDE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在
4、一次夏令营活动中,小明从营地A点出发,沿北偏东60方向走了到达B点,然后再沿北偏西30方向走了500m到达目的地C点。(1)求A、C两点之间的距离。(2)确定目的地C在营地A的什么方向。解析:(1)过B点作BE/ADDAB=ABE=6030+CBA+ABE=180CBA=90即ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在RtABC中,BC=500m,AC=1000mCAB=30DAB=60DAC=30即点C在点A的北偏东30的方向举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答
5、案】由于厂门宽度足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH如图所示,点D在离厂门中线0.8米处,且CD,与地面交于H解:OC1米(大门宽度一半),OD0.8米(卡车宽度一半)在RtOCD中,由勾股定理得:CD.米,C.(米).(米)因此高度上有0.4米的余量,所以卡车能通过厂门(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分请你帮助计算一下,哪种架设方案最省电线思路点拨:解答本题的思路
6、是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为AB+BC+CD3,AB+BC+CD3图(3)中,在RtABC中同理图(3)中的路线长为图(4)中,延长EF交BC于H,则FHBC,BHCH由FBH及勾股定理得:EAEDFBFCEF12FH1此图中总线路的长为4EA+EF32.8282.732图(4)的连接线路最短,即图(4)的架设方案最省电线举一反三【变式】如图,一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程解:如图,在Rt中
7、,底面周长的一半cm,根据勾股定理得(提问:勾股定理)AC(cm)(勾股定理)答:最短路程约为cm类型四:利用勾股定理作长为的线段5、作长为、的线段。思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。作法:如图所示(1)作直角边为1(单位长)的等腰直角ACB,使AB为斜边;(2)以AB为一条直角边,作另一直角边为1的直角。斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、的长度就是、。举一反三【变式】在数轴上表示的点。解析:可以把看作是直角三角形的斜边,为了有利于画图,让其他两边的长为整数,而10又是9和1这两个完全平方
8、数的和,得另外两边分别是3和1。作法:如图所示在数轴上找到A点,使OA=3,作ACOA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为。类型五:逆命题与勾股定理逆定理6、写出下列原命题的逆命题并判断是否正确1原命题:猫有四只脚(正确)2原命题:对顶角相等(正确)3原命题:线段垂直平分线上的点,到这条线段两端距离相等(正确)4原命题:角平分线上的点,到这个角的两边距离相等(正确)思路点拨:掌握原命题与逆命题的关系。解析:1.逆命题:有四只脚的是猫(不正确)2.逆命题:相等的角是对顶角(不正确)3.逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上(正确)4.逆命题:到角两
9、边距离相等的点,在这个角的平分线上(正确)总结升华:本题是为了学习勾股定理的逆命题做准备。7、如果ABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ABC的形状。思路点拨:要判断ABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。解析:由a2+b2+c2+50=6a+8b+10c,得:a2-6a+9+b2-8b+16+c2-10c+25=0,(a-3)2+(b-4)2+(c-5)2=0。(a-3)20,(b-4)20,(c-5)20。a=3,b=4,c=5。32+42=52,a2+b
10、2=c2。由勾股定理的逆定理,得ABC是直角三角形。总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。举一反三【变式1】四边形ABCD中,B=90,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。【答案】:连结ACB=90,AB=3,BC=4AC2=AB2+BC2=25(勾股定理)AC=5AC2+CD2=169,AD2=169AC2+CD2=AD2ACD=90(勾股定理逆定理)【变式2】已知:ABC的三边分别为m2n2,2mn,m2+n2(m,n为正整数,且mn),判断ABC是否为直角三角形.分析:本题是利用勾股定理的的逆定理,只要证明:a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 经典 例题 参考答案 11
限制150内