《计算方法》课后作业参考答案(1-6章)打印版.docx
《《计算方法》课后作业参考答案(1-6章)打印版.docx》由会员分享,可在线阅读,更多相关《《计算方法》课后作业参考答案(1-6章)打印版.docx(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1章绪论1.3 设准确值为 x= 3.78695,y =10 ,它们的近似值 /= 3.7869/*= 3.7870 ,y;=9.9999,y*亍10.1,旷亍10.0001分别具有几位有效数字?解:(1)工;=3.7869 = 0.37869X101, x = 0.378695x10周=k-X, | = p.378695xio- 0.37869 xlO11 = 0.000005x10 LxlO1-5所以,彳*具有5位有效数字。芯=3.7870 = 0.37870X101, x = 0.378695X101E= |x-x*| = p.378695xl0- 0.37870 xlO11 = 0.
2、000005x10 Lx IO1-5所以,/具有5位有效数字。(2)y = O.lxlOy = 0.99999 xlO1, = O.lOlxlO2, O.lOOOOlxlO2E1= y y; = 1x101 0.99999x1()1E1= y y; = 1x101 0.99999x1()1=O.OOOOlxlOLxlO142所以,x*具有4位有效数字。E2= |y-| = ).lxio2-0.101 XlO2 | = 0.001xl02 LxlO2-2所以,液具有2位有效数字。E3= |y-| = ),lxl02-0.100001xl02 | = 0.000001 xlO2 LxlO2 5所以
3、,才具有5位有效数字。L4设9=0.0056731是龙的具有五位有效数字的近似值,试计算其绝对误差限和相对误差限。解:根据定理1.1, %* =0.0056731具有五位有效数字,则*的相对误差尸满足石下 1xl0-n+1=1xl0-5+1 = 0.5xl0-4= 即为相对误差限。rl 22(2) A二2 1-3-13 10 7-1 2 4 -2 10-152 1 3 110 0 013 1 0-12 41 0 -17 0 1-2 0 05 0 0 0 1J03 出事&出少出血1?0433180 13 311 I ID01100331 3 12 -4 -2 0-1520 0F1 031-0 1
4、312-37170721 3307001 +2x_0 _J_ -180 -J_ 0 03333J牛郎0 10 00 03 19250522510010013 0000I1312r0 1025400 0-17707- 70 0-3719 0 -21T 7 71785ofof78 -517o o O 1O 3 一7 1 一至25 n -311 - 7 11 - - 5O 。-7J25 7 _31 7 8 -51750127 1 O- -3 1 o O14+I3xma23 _ 161-器 tr4113 万38410tr 336打19585T7 8517517o o i -A _L A8517850
5、0 01 0 00 1 03.7对以下矩阵进行LU分解。2011(1) I -3 4-2 I;Il 17-5 ij(1)=2,3 = 173;1212312331二 4 一 (二)x0 = 4 w=-2-(-l)xl=-l22317=(7 x 0) / 4 =3232ixl-4)=-二11237T(注意:最后一个与3的求法)1_3 22三角分解的紧凑格式:112 -3/21/20 14 2 I7 W201-3/241/2 -1/2 7/4-52-3/21/2014-1/2I7/4 -37/8J1L= -3/21ll/27/4-1 2 3 4| 2 u = |IL0 14 -1/2-37/8 1
6、(2)13 4 52 14 423 2511=1 必 2=2,3= 3 921 -【,A31 . Ju22 =3 2 = 1u23 =43=1, “23 = 54 = 1,32= 1 2x3 = 3,,42= 3 2x 2 = 1“33 = 4 _ 2x3 1 = 3,34 = 4 2x 4 + 3 = 1/43=2-2x3-1x(-1)x1 = 344= 5-2x4 -(-1)x1- (-3)x(-l) = -5三角分解的紧凑格式:三角分解的紧凑格式:1 2 3 41 2 3 414 5 一 14 4l 122 523 4 5 一 11 4 41|23 2 51221-3-131424 12
7、341114|2-31-15 12-1-3-52-10 0-3510(3)0 2 4 -1 0 0 7 10122131 二 ,,41 = u22= 5-12义1,12U233=1 x 0 = 1, w = 024I =0I =(2-0x1)323.547 24u33,八4= 4-0- xl =I =74377x2_ = 4924 245u = 1 x34xO = -lU4449= 10-0-0-x(-l) =24289241_3-240-1712242 124三角分解的紧凑格式:0 14 72-2OOO 14 7n Im J oo-llo289 I24-17 -2 4 - 7 o-7-24-
8、7 o 2 3 -2 o o IIyIlJI o o T 叫 o 124一 74924? 32 j )2 - o O - -I O1O-11OJO1- O 11一 o o T10 O 14 7 7 0?- 7 OT28924I 24一 749243.13判断用雅克比迭代法和高斯赛德尔迭代法解下列线性方程组是否收敛。(1)解:雅克比迭代矩阵:13O- I -U10-23 Ojoj0.2C3.+U) =,0.25j0 -2 -110 -0,4 -0.2- 1 -2 = 0.25 0 -0.50.1JL-2 30 J 0.2 0.302AE-Cj = -0.250.20.4 0.220.5 = 23
9、+0.212+ 0.055 = 0-0.3 2求得G的特征根4 = -0.21,4= 0.11+ 0.49z , /L3= 0.11- 0.49i/XG) = O51,故该线性方程组收敛。高斯-赛德尔迭代法的迭代矩阵:5C =(D-LTU = -1 GI1|_2-2 110 0.4- 0.2 10 -2 j =-0.1 -0.550 I |_0 0.05 -0.125J2|4_Cg卜()00.40.22 + 0.10.55= 2 2 + 0.2252 + 0.04) = 0-0.05 2+0.125% = 0, %= -0.1125 + 01654i,-0.1125- 0.1654/XCg)=
10、 021,故该线性方程组发散。-0.5-0.5-0.52 -0.5 AE-Cg 02 + 0.5000.50.5 =2(2 + 0.5)2=02 + 0.54 = 4=-0.5,4=0 AQ)1故该方程组收敛。15第4章插值与拟合4.1已知一组数据,见表4-15o试用线性插值与二次插值计算sin (0.629)的近 似值。表 4-15X00.5235990.7853981.0471981.570796sinx00.50.7071070.8660251解:由 题意设 y=sinx,取 xo=O yo=O ; xi=0.523599yi=0.5 ; X2=0.785398y2=0.707107;
11、x3= 1.047198 y3=0.866025 ; x4= 1.570796 y4= 1L线性插值法:lxi=0.523599, X2=0.785398为节点线性插值多项式:(通式):PAx)= X-X. y.+ XXy = X-0.785398x0.5+ x-0.523599 x 0.7071071221=0.5833820.022459+0.207107%0.261799或者sin(0.629)=% + 为一必.x) = 0583382x -x212.二次插值计算:以xi=0.523599, x2=0.785398, X3=l.047198 为节点(通式)= (x 0.785398)(x
12、 1.047198)x 0.5 + (0.523599 - 0.785398)(0.523599 -1.047198)23599)(1 .。47198)+(0.785398 0.523599)(0.785398 -1.047198)(x - 0.523599)(x - 0.785398)八环小”x 0.866025(1.047198 - 0.523599)(1.047198 0.785398)_ -0.3303x2+1.1756x - 0.0552-0.9395= 0.589177 4.5给定一组数据,见表牛19,用牛顿基本插值公式计算/(Q1581) 和/(0.6367)的值。表 4-19解
13、:1012345X0.1250.250.3750.50.6250.75/(X)0.796180.773340.743710.704130.656320.6022816,5(%)=/(/)+%0,P (1-%)+/K,%1,%2 1(% - A)(% 一%1)+f x0, x19 x2, x3 (% - x0)(x - X1 )(x-x2) +f x0,X2, x3, x4(x - x0)(x - %! )(x - x2)(x - x3) +fxQ, %1,x2, x3, x4, x5 (x - x0 )(x - -)(% 一 x2 )(x - x3 )(x - x4)Xiyi一阶均差二阶均差三
14、阶均差四阶均差五阶均差0.1250.7961810.250.77334-0.18272x-0.1250.3750.74371-0.23704-0.21728(x-0.125)(x-0.25)0.50.70413-0.31664-0.3184-0.26965(x-0.125)(x-0.25) (x-0.375)0.6250.65632-0.38248-0.263360.146770.83284(x-O.I25)(x-O,25) (x-0.375)(x-0.5)0.750.60228-0.43232-0.199360.170670.0478-1.25603(x-0.125)(x-0.25) (x-
15、0.375)(x-0.5) (x-0.625)f(x) = 0.79618 + (-0.18272) X(x- 0.125) + (-0.21728)x (x - 0.125) x(x- 0.25) +(-0.26965) x(x- 0.125) x(x - 0.125) x(x - 0.375)+(0.83284) x(x - 0.125) x(x - 0.25) x(x - 0.375) x(x - 0.5)+(-1.25603) x(x - 0.125) x(x - 0.25) x(x - 0.375) x(x - 0.5) x(x - 0.625)=-1.25603x5+ 3.1878
16、96/-2.978865x3+ 0.958676x2- 0.296086x + 0.8232895 所以:f (0.1581) = -1.25603x(0.1581)5+ 3.187896 x(0.1581)4-2.978865x(0.1581)3 +0.958676x(0.1581)2-0.296086 x(0.1581) + 0.8232895 = 0.79029同理可得:/(0.6367) = 0.65152 4.11设实验数据见表4-24,求其二次拟合多项式。表 4-24解:设拟合曲线为一+k + Xi0.10.20.30.40.50.60.7y5.12345.30535.56845.
17、93786.42707.07987.9493建立正规方程组为:1.4 0.784 0.4676。29.765317由此解得:5.1623-0.7601lL 6.7024 lj即可求得二次拟合多项式为:y=5.1623-0.7601 x+6.7024x2*1%X21JC31X41yMX, /10.10.010.0010.00015.12340.512340.05123420.20.040.0080.00165.30531.061060.21221230.30.090.0270.00815.56841.670520.50115640.40.160.0640.02565.93782.375120.9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算方法 课后 作业 参考答案 打印
限制150内