《南邮2013MATLAB数学实验答案(全)(27页).doc》由会员分享,可在线阅读,更多相关《南邮2013MATLAB数学实验答案(全)(27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-南邮2013MATLAB数学实验答案(全)-第 27 页第一次练习教学要求:熟练掌握Matlab软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab软件解决微积分、线性代数与解析几何中的计算问题。补充命令vpa(x,n)显示x的n位有效数字,教材102页fplot(f(x),a,b)函数作图命令,画出f(x)在区间a,b上的图形在下面的题目中为你的学号的后3位(1-9班)或4位(10班以上)1.1 计算与 syms xlimit(902*x-sin(902*x)/x3)ans =366935404/3limit(902*x-sin(902*x)/x3,inf)ans =01.2
2、,求 syms xdiff(exp(x)*cos(902*x/1000),2)ans = (46599*cos(451*x)/500)*exp(x)/250000 - (451*sin(451*x)/500)*exp(x)/2501.3 计算dblquad(x,y) exp(x.2+y.2),0,1,0,1)ans =2.13941.4 计算 syms xint(x4/(9022+4*x2) ans = (91733851*atan(x/451)/4 - (203401*x)/4 + x3/121.5 syms xdiff(exp(x)*cos(902*x),10)ans =-35648507
3、6957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 给出在的泰勒展式(最高次幂为4). syms xtaylor(sqrt(902/1000+x),5,x) ans = -(9765625*451(1/2)*500(1/2)*x4)/82743933602 +(15625*451(1/2)*500(1/2)*x3)/91733851 -(125*451(1/2)*500(1/2)*x2)/406802 + (451(1/2)*500(1/2)*x)/902 +(45
4、1(1/2)*500(1/2)/5001.7 Fibonacci数列的定义是用循环语句编程给出该数列的前20项(要求将结果用向量的形式给出)。x=1,1;for n=3:20 x(n)=x(n-1)+x(n-2);endxx=Columns 1 through 10 1 1 2 3 5 8 13 21 34 55Columns 11 through 20 89 144 233 377 610 987 1597 2584 4181 67651.8 对矩阵,求该矩阵的逆矩阵,特征值,特征向量,行列式,计算,并求矩阵(是对角矩阵),使得。A=-2,1,1;0,2,0;-4,1,902/1000;in
5、v(A)ans =0.4107 0.0223 -0.4554 0 0.5000 0 1.8215 -0.4554 -0.9107eig(A)ans =-0.5490 + 1.3764i -0.5490 - 1.3764i 2.0000 det(A)ans =4.3920P,D=eig(A)P = %特征向量0.3245 - 0.3078i 0.3245 + 0.3078i 0.2425 0 0 0.9701 0.8944 0.8944 0.0000 D = -0.5490 + 1.3764i 0 0 0 -0.5490 - 1.3764i 0 0 0 2.0000 P*D6*inv(P) %A
6、6的值ans =15.3661 12.1585 + 0.0000i -5.8531 0 64.0000 0 23.4124 -5.8531 + 0.0000i -1.6196 1.9 作出如下函数的图形(注:先用M文件定义函数,再用fplot进行函数作图):m文件: function y=fenduan(x) if x=1/2 y=2*xelse x syms n A=sym(4,2;1,3);x=1;2;P,D=eig(A) %没有sym下面的矩阵就会显示为小数P = -1, 2 1, 1 D = 2, 0 0, 5 An=P*Dn*inv(P) An = 2n/3 + (2*5n)/3,
7、(2*5n)/3 - (2*2n)/3 5n/3 - 2n/3, (2*2n)/3 + 5n/3 xn=An*x xn = 2*5n - 2n 2n + 5n3.2 对于练习1中的,求出的通项. syms n A=sym(2/5,1/5;1/10,3/10); x=1;2;P,D=eig(A) P = -1, 2 1, 1 D = 1/5, 0 0, 1/2 An=P*Dn*inv(P) An = (2*(1/2)n)/3 + (1/5)n/3, (2*(1/2)n)/3 - (2*(1/5)n)/3 (1/2)n/3 - (1/5)n/3, (1/2)n/3 + (2*(1/5)n)/3xn
8、 = 2*(1/2)n - (1/5)n (1/2)n + (1/5)n3.3 对随机给出的,观察数列.该数列有极限吗? A=4,2;1,3;a=;x=2*rand(2,1)-1;for i=1:20 a(i,1:2)=x; x=A*x; end for i=1:20 if a(i,1)=0 else t=a(i,2)/a(i,1); fprintf(%g,%gn,i,t); endend 结论:在迭代17次后,发现数列存在极限为0.53.4 对120页中的例子,继续计算.观察及的极限是否存在. (120页练习9) A=2.1,3.4,-1.2,2.3;0.8,-0.3,4.1,2.8;2.3
9、,7.9,-1.5,1.4;3.5,7.2,1.7,-9.0;x0=1;2;3;4;x=A*x0;for i=1:1:100a=max(x);b=min(x);m=a*(abs(a)abs(b)+b*(abs(a) A=2.1,3.4,-1.2,2.3;0.8,-0.3,4.1,2.8;2.3,7.9,-1.5,1.4;3.5,7.2,1.7,-9.0;P,D=eig(A)P = -0.3779 -0.8848 -0.0832 -0.3908 -0.5367 0.3575 -0.2786 0.4777 -0.6473 0.2988 0.1092 -0.7442 -0.3874 -0.0015
10、0.9505 0.2555D = 7.2300 0 0 0 0 1.1352 0 0 0 0 -11.2213 0 0 0 0 -5.8439结论:A的绝对值最大特征值等于上面的的极限相等,为什么呢?还有,P的第三列也就是-11.2213对应的特征向量和上题求解到的y也有系数关系,两者都是-11.2213的特征向量。3.6 设,对问题2求出若干天之后的天气状态,并找出其特点(取4位有效数字). (122页练习12) A2=3/4,1/2,1/4;1/8,1/4,1/2;1/8,1/4,1/4;P=0.5;0.25;0.25;for i=1:1:20 P(:,i+1)=A2*P(:,i);end
11、PP = Columns 1 through 10 0.5000 0.5625 0.5938 0.6035 0.6069 0.6081 0.6085 0.6086 0.6087 0.6087 0.2500 0.2500 0.2266 0.2207 0.2185 0.2178 0.2175 0.2174 0.2174 0.2174 0.2500 0.1875 0.1797 0.1758 0.1746 0.1741 0.1740 0.1739 0.1739 0.1739 Columns 11 through 200.6087 0.6087 0.6087 0.6087 0.6087 0.6087 0
12、.6087 0.6087 0.6087 0.6087 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.2174 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 0.1739 Column 21 0.6087 0.2174 0.1739结论:9天后,天气状态趋于稳定P*=(0.6087,0.2174,0.1739)T3.7 对于问题2,求出矩阵的特征值与特征向量,并将特征向量与上一题中的结论作对比. (122页练习14) A2=3/4,1
13、/2,1/4;1/8,1/4,1/2;1/8,1/4,1/4; P,D=eig(A2)P = -0.9094 -0.8069 0.3437 -0.3248 0.5116 -0.8133 -0.2598 0.2953 0.4695D = 1.0000 0 0 0 0.3415 0 0 0 -0.0915分析:事实上,q=k(-0.9094, -0.3248, -0.2598)T均为特征向量,而上题中P*的3个分量之和为1,可令k(-0.9094, -0.3248, -0.2598)T=1,得k=-0.6696.有q=(0.6087, 0.2174, 0.1739),与P*一致。3.8对问题1,设
14、为的两个线性无关的特征向量,若,具体求出上述的,将表示成的线性组合,求的具体表达式,并求时的极限,与已知结论作比较. (123页练习16) A=3/4,7/18;1/4,11/18;P,D=eig(A);syms k pk;a=solve(u*P(1,1)+v*P(1,2)-1/2,u*P(2,1)+v*P(2,2)-1/2,u,v);pk=a.u*D(1,1).k*P(:,1)+a.v*D(2,2).k*P(:,2)pk = -5/46*(13/36)k+14/23 5/46*(13/36)k+9/23或者:p0=1/2;1/2;P,D=eig(sym(A);B=inv(sym(P)*p0B
15、 = 5/46 9/23syms kpk=B(1,1)*D(1,1).k*P(:,1)+B(2,1)*D(2,2).k*P(:,2)pk = -5/46*(13/36)k+14/23 5/46*(13/36)k+9/23 vpa(limit(pk,k,100),10)ans = .6086956522 .3913043478结论:和用练习12中用迭代的方法求得的结果是一样的。第四次练习教学要求:会利用软件求勾股数,并且能够分析勾股数之间的关系。会解简单的近似计算问题。4.1 求满足,的所有勾股数,能否类似于(11.8),把它们用一个公式表示出来?解法程序1:for b=1:998 a=sqrt(b+2)2-b2); if(a=floor(a) fprintf(a=%i,b=%i,c=%in,a,b,b+2) endend运行结果:a=4,b=3,c=5a=6,b=8,c=10a=8,b=15,c=17a=10,b=24,c=26a=12,b=35,c=37a=14,b=48,c=50a=16,b=63,c=65a=18,b=80,c=82a=20,b=99,c=101a=22,b=120,c=122a=24,b=143,c=145a=26,b=168,c=170a=28,b=195,c=197a=30,b=224,c=226a=32,b=255
限制150内