鸡兔同笼问题几种不同的解法(6页).doc
《鸡兔同笼问题几种不同的解法(6页).doc》由会员分享,可在线阅读,更多相关《鸡兔同笼问题几种不同的解法(6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-鸡兔同笼问题几种不同的解法鸡兔同笼问题几种不同的解法 英国数学教育家贝克浩斯(Backhousl)在研究“问题解决”时首先提到的是中国古算题,其中包括鸡兔同笼问题、100个和尚买100个馒头问题等。解这些问题需要想象,解者在其情景中有明确的且力所能及的目的,但缺少现成的方法达到此目的,因此常常作为夜航船中或纳凉赏月时的一种试智比知式考问的备办学问,一代一代传下来,还传到世界各地,鸡兔问题传到日本叫龟鹤问题。明代作家张岱曾说:“天下学问,惟夜航船中最难对付”。又到纳凉的季节,老公公们要用这些问题来试试儿孙辈的学问怎样?有位小朋友听了老公公提出的问题,觉得难度不大,便满怀信心地对老公公说:慢点,
2、让我打开灯,拿纸和笔。老公公讲不用笔就不可以算吗?这一下,许多小朋友都被难住了。显然老公公解这些难题的技巧肯定不同凡响,那么老公公是怎样解这些问题的呢?我们先举个例子说说。 一、鸡兔同笼问题 例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只? 解法1 假设法 假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(450=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(602=)30(只),则兔的只数为(50-30)20(只)。 这种解法,思路清晰,但较复杂,不便操作。能不能形象地画个
3、图呢?让我们试试。 解法2 图形法 从图中看ACDF的面积450200(只脚),比实际多出GHEF的面积200-14060(只脚),AB=GH=602=30(只鸡),BC=AC-AB=50-3020(只兔) 解法2比解法1高级,算理是一样的。这里答案是图上算出的,显然这两种解法都要用纸和笔。不用纸和笔肯定是用口诀或易记的公式,这是老公公的传家宝。 解法3 公式法 老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(1402)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(7050)20(个),即兔有
4、20只,则鸡有(5020)30(只)。这个故事实际上老公公用了如下的公式。 脚数和2-头数和=兔子数。 小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。老公公又出了 (1)30个头,80只脚。(兔10,鸡20)。 (2)100只脚,40个头。(兔10,鸡30)。 (3)80个头,200只脚。(兔20,鸡60) 小孙子们个个都愉快地答出来了。 这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。这个公式是碰巧做对还是符合算理的呢?这是十分重要的。数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是补行的手续而已。”现在我们就来补行这个手
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 问题 不同 解法
限制150内