《配方法拓展与解析.docx》由会员分享,可在线阅读,更多相关《配方法拓展与解析.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、配方法的拓展与解析配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过 配方找到和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并 且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也 将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。配方法的配方 依据是二项完全平方公式(a+b)2=a2+2ab + b?,将这个公式灵活运用,可得 到各种基本配方形式,如:a2 +b2 = (a+b) 2 2ab= (ab)2 +2ab;a2 + ab + b2 = (a+b)2 ab= (ab) 2 +3ab。配方法在数学的教与学中有着广泛的应
2、用。在初中阶段它主要适用于:一元 二次方程、二次函数、二次代数式的讨论与求解。经过几年的教学实践发现:很 多情况下用配方法解一元二次方程或者求二次函数的顶点坐标要比用公式法简 单实用。在应用配方法解一元二次方程(ax2+bx+c=0)时有两种做法:一种是先移走常数项,然后方程两边同时除以二次项的系数,把二次项系 数化为1,再两边同时加上一次项系数(除以二次项系数后的)一半的平方,把 原方程化成(x+m)2=n(n20)的形式,再两边同时开方,把一元二次方程转化为 一元一次方程。典型例题:2x2+6x-3=0解法1:移项得:2x2+6x=3两边同时除以2得:x2+3x = -2两边同时加g)2得
3、:/ + 3% + g)2 = ( + :所以:(工+-2=24士,日 3 V15_3415开万得:x + =或x + 二2222解得:X 二3 +后,工2 =3 V15另一种方法是先移走常数项,然后通过“凑”与“配”进行配方。解法2:移项得:2x2+6x=3原方程变为:(7x)2+2五苗 + ()2 =3 +3)2即原方程化为:3 +孚)2言h、心日 rr 3a/2 VSO rz 3a/2V0两边叵I时开方何: V2x H=或 V2x H-=2222解得:x 二3 + a/15 不 ,12 =-3 - V15-2与用配方法解一元二次方程不同的是,在用配方法求二次函数 =2+。的顶点坐标时,要
4、把二次项和一次项看作一个整体,提出(而不 是除以)二次项的系数,再进行配方,但配方时与解一元二次方程的配方有所不 同。典型例题2:用配方法求y = 2/+6x-3的顶点坐标解:y = 2x2 +6x-3-2(x2 + 3x) 3=2 x2+3x + (-)2-(-)2 -3 22= 2(x + -)2-3、3、215=2。+ )2 22如上例,用配方法求二次函数顶点坐标时,不是等号两边同时加上一次项系 数一半的平方,而是在中括号里加上一次项系数一半的平方,但为了保持原有的 二次函数不变,必须在中括号里再减去一次项系数一半的平方。这是学生在以后 学习用配方法求二次函数顶点坐标时经常与用配方法解一
5、元二次方程相混淆的 地方,也是学生经常出错的地方。另外配方法在二次代数式的讨论与求解中应用也非常广泛。典型例题3:用配方法证明:无论x为何实数,代数式24%+ 4.5的值恒大 于零。与用配方法求二次函数的顶点坐标类似,此题也是把二次项和一次项看作一 个整体,并对其进行配方。解法如下:x2-4x + 4.5= (x2 -4x + 22 -22) + 4.5= (x-2)2 +0.5 0.5 0无论x为何实数,代数式2 4犬+ 4.5的值恒大于零。典型例题4:假设尤2y2 一20孙+,+,2 +8=。,求羽y的值。此题可以运用“裂项”与“凑”的技巧,把-20xy裂成-18xy与-2xy的和, 来完
6、成配方,并根据完全平方式为非负数的性质把二元二次方程化为二元一次方 程组。其解法如下:X2y2 _20孙 + x2 + y2 +81 =0.A (x2 J/ _ 18孙 + 81) +,_ 2肛 + /)= oBP (xy-9)2 +(x-y)2 =0xy-9 = 0 , y = 0,x = y = 3典型例题5 : ( 2005卡西欧杯全国初中数学竞赛)假设 M=3x2-8xy+9y2-4x+6y+13 (x, y 是实数),那么 M 的值一定是()A正数 B负数 C零 D整数精析:先将元多项式转化成几个完全平方式的和的形式,然后就其结构特征 进行合理的分析、推理,可到达目的。解:因为 M=
7、3x2-8xy+9y2-4x+6y+13=2 (x-2y) 2+ (x-2) 2+ (y+3) 22。并且 2 (x-2y) 2, (x-2) 2, (y+3) ?这三个式子不能同时为0,所以M0,应选A。典型例题6化简二次根式719-8万+ 719 + 8万精析:复合二次根式的化简是竞赛中比拟常见的问题,化简的关键是将被开 方数化成完全平方的形式,要用到配方的思想。719-873 = 719-2748 = J19-= 716-2VT67+3解: 1=不(V16 - V3 J = V16 - V3 =4 V3同理可得719 + 8V3 =4 + 6所以,原式=8典型例题7三角形的三边a, b, c满足a2+b2+c2=ab+ac+bc,请你判断这个三角形的形状。精析:确定三角形的形状,主要是讨论三条边之间的关系。代数式 a2+b?+c2=ab+ac+bc之中蕴含了完全平方式,我们要重新拆项,组合如下:2a2+2b2+2c2=2ab+2ac+2bc2a2+2b2+2c2_2ab_2ac_2bc-0a2-2ab +b2+ a2-2ac+ c2+b2-2bc+c2=0(a-b)2+(a-c)2+(b-c)2=0所以a=b=c三角形是等边三角形
限制150内