2022年2022年哈尔滨工业大学考研数学专业大纲 .pdf
《2022年2022年哈尔滨工业大学考研数学专业大纲 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年哈尔滨工业大学考研数学专业大纲 .pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2011 年哈尔滨工业大学数学系硕士研究生入学考试612 数学分析考试大纲考试科目名称:数学分析考试科目代码:612 一、考试要求:1)要求考生熟练撑握数学分析的基本概念、基本理论和基本方法。2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。二、考试内容:1)、极限和连续a熟练掌握数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。b掌握极限的性质及四则运算性质,特别要能够熟练运用两面夹原理和两个特殊极限。c熟练掌握实数系的基本定理
2、:区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel 有限覆盖定理,Cauchy 收敛准则;并理解相互关系。d熟练掌握函数连续性的概念及相关的不连续点类型。能够运用函数连续的四则运算与复合运算性质以及相对应的无穷小量的性质;并理解两者的相互关系。e熟练掌握闭区间上连续函数的性质:有界性定理、最值定理、介值定理和Contor 定理。2)、一元函数微分学a理解导数和微分的概念及其相互关系,理解导数的几何意义和物理意义,理解函数可导性与连续性之间的关系。b熟练掌握函数导数与微分的运算法则,包括高介导数的运算法则,会求分段函数的导数。c熟练掌握
3、Rolle 中值定理,Lagrange 中值定理和平共处Cauchy 中值定理以及 Taylor 公式。d能够用导数研究函数的单调性、极值,最值和凸凹性。e掌握用 LHospital 法则求不定式极限的方法。3)、一元函数积分学a理解不定积分的概念。掌握不定积分的基本公式,换元积分法和分部积分法,会求有理函数、三角有理函数和简单元理函数的积分。b掌握定积分的概念,包括 Darboux 和,上、下积分及可积条件与可积函数类。c掌握定积分的性质,熟练掌握微积分基本定理,定积分的换元积分法和分部积分法。d掌握用定积分表达和计算一些几何量与物理量(平面图形的面积,平面贡线的弧长,旋转体的体积与侧面积,
4、平行截面面积已知的立体体积,变力做功和物体的质量与质心)。e理解广义积分的概念。熟练掌握判断广义积分收敛的比较判别法,Abel 判别法和 Dirichlet 判别法;其中包括积分第二中值定理。名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 5 页 -4)、无穷级数a理解数项级数敛散性的概念,掌握数项级数的基本性质。b 熟练掌握正项级数敛散的必要条件,比较判别法,Cauchy 判别法,DAlembert判别法与积分判别法。c熟练掌握任意项级数绝对收敛与条件收敛的概念及其相互关系。熟练掌握交错级数的 Leibnitz 判别法。掌握绝对收敛级数的性质。d熟练掌握函数项级数一致收敛性的概
5、念以及判断一致收敛性的Weierstrass判别法。Abel 判别法和 Dirichlet 判别法。熟练掌握一致收敛级数的性质。e掌握幂级数及其收敛半径的概念,包括 Cauchy-Hadamard定理和 Abel 第一定理。f熟练掌握幂级数的性质。能够将函数展开为幂级数。了解 Weierstrass 逼近定理。g了解 Fourier 级数的概念与性质以及敛散性的判别法。5)、多元函数微分学与积分学a理解多元函数极限与连续性,偏导数和全微分的概念,会求多元函数的偏导数与全微分。b掌握隐函数存在定理。c会求多元函数极值和无条件极值,了解偏导数的几何应用。d掌握重积分、曲线积分和曲面积分的概念与计算
6、。e熟练掌握 Gauss 公式、Green 公式和 Stoks 公式及其应用。6)、含参变量积分a了解含参变量常义积分的概念与性质。b掌握含参变量广义积分的一致收敛性的概念及其判别法。掌握一致收敛的含参变量广义积分的性质。三、试卷结构:1)考试时间:180 分钟,满分:150 分2)题型结构a:论证与举反例(105-135 分)b:基本计算(15-45 分)四、参考书目:1 数学分析(上、下册),复旦大学数学系编,高等教育出版社,2007 年,第二版2数学分析习题集,北京大学数学系编,高等教育出版社。名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 5 页 -2011 年哈尔滨工业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年2022年哈尔滨工业大学考研数学专业大纲 2022 哈尔滨工业大学 考研 数学 专业 大纲
限制150内