2022年皮肤检测技术 .pdf





《2022年皮肤检测技术 .pdf》由会员分享,可在线阅读,更多相关《2022年皮肤检测技术 .pdf(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、皮肤检测技术第一节皮肤检测技术相关理论一、肤色检测技术肤色检测技术是指在图像中选取对应于人体皮肤像素区域的过程。广泛应用于人脸检测与识别、人脸追踪、面部表情识别、手势识别、互联网色情图像过滤以及基于内容的图像检索等。除此之外,肤色检测技术也可以应用于包括视频监控与检索、皮肤疾病诊断、化妆品效果分析等日常生活领域。由此可见肤色检测技术在理论研究和实际应用中都具有极为重要的研究价值和意义。皮肤检测技术在以下领域扮演着非常重要的角色:(1)人脸检测该问题最初作为自动人脸识别系统的定位环节被提出,近年来由于其在安全访问控制、视觉监测、基于内容的检索和新一代人机交互界面等领域的应用价值,开始作为一个独立
2、的课题受到研究者的普遍重视。随着电子商务等应用的发展,人脸识别因为其非接触性的特点而成为最有潜力的生物身份验证手段,这种应用背景要求自动人脸识别系统能够对一般环境图像具有一定的适应能力,由此所面临的一系列问题使得人脸检测开始作为一个独立的课题受到研究者的重视。今天,人脸检测的应用背景己经远远超出了人脸识别系统的范畴,在基于内容的检索、数字视频处理、视觉检测等方面都有着重要的应用价值。(2)人脸追踪随着多媒体通信技术的不断发展,各种基于通信新技术的视频产品已经走进了人们的日常生活,不但给人们带来了来极大的方便,还增添了不少乐趣。其中人脸追踪技术就被广泛应用于个人通信、交互娱乐、视讯监控、人机交互
3、等领域。例如将人脸识别与追踪技术应用于数码相机中,可以准确快速地定位相机取景器中的人脸,从而实现对人脸的快速对焦,拍出清晰的人像。该技术通过对摄像头捕获到的人脸图像进行持续的跟踪与验证,不断进行人脸区域的准确性校正,从而实现对人脸的精确定位与比对。这一技术的成功也是基于对皮肤检测的应用。(3)面部表情识别面部表情识别系统就是对人脸的表情信息进行特征提取和分析,按照人的认识和思维方式加以归类和理解,利用人类所具有的情感信息方面的先验知识使计名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 25 页 -算机进行联想、思考及推理,进而从人脸信息中去分析理解人的情绪,如快乐、惊奇、愤怒、恐
4、惧、厌恶、悲伤等。系统通常以程序块的序列结构表示,这与经典的模式识别模型一致。主要的块包括:图像的获得、预处理、特征提取、分类和后续处理。皮肤检测在面部表情识别的预处理阶段和特征提取阶段都起着关键的作用。(4)手势识别手势是一种自然、直观、易于学习的人机交互手段。手势识别作为手势输入的先前条件,是实现自然、直接的人机交互不可缺少的关键技术。目前的手势识别技术主要分为基于数据手套和基于视觉两种,这两种方法各有自己的长处,也都取得了一些研究成果,但都还不成熟,手势输入作为一种自然、丰富、直接的交互手段在人机交互技术中占有重要的地位,手势识别与皮肤识别技术紧密相关。(5)实时敏感图像过滤该技术的研究
5、方向具有重大的应用价值,对网络视觉信息过滤和净化有很好的应用前景。伴随着网络的普及,网络安全日益成为关系到国家与社会安全的一个重要内容,对网络信息进行必要的技术监测和过滤,能有效地打击网络犯罪。互联网上的色情图像的传播愈演愈烈,难以用人工进行有效的控制,不法分子常以篡改其他网站主页或使用隐蔽代名词的方式来传播色情图像。因此,必须引入计算机视觉和图像识别技术,对嵌入在主页中的图像进行分析。色情图像在内容上差别很大,但是它们的共同点是:包含了大量裸露的皮肤区域。所以,敏感图像检测问题又归结到了皮肤检测问题。人脸识别和敏感图像过滤等技术都必须解决一个基础问题:如何把图像精确地划分为皮肤和背景两类。而
6、分类的精确与否直接影响到下一步的处理,如图像分割、形状判断等。因此,一个精确检测皮肤的方法具有非常重要的研究价值。但另一方面,精确的检测皮肤是非常困难的,例如,人种的肤色差异、有色灯光、阴影,以及强光照射、摄像机色偏等都影响对皮肤的正确识别。尤其是在复杂光照情况下,肤色的检测更加具有挑战性。二、国内外研究现状肤色检测是一个模式识别问题,其模式分为皮肤像素和非皮肤像素。它是所有基于肤色的应用要处理的第一个步骤,它的任务是首先对输入的图像进行分割,名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 25 页 -即把整幅图像分割成两部分:一部分为肤色区域,另一部分为非肤色区域。1.其评价标
7、准主要有以下4 点:(1)检测率:被正确检测到的皮肤像素数与原图像内包含的肤色像素数的比值。检测率越高,说明检测系统对皮肤的接受能力越强。(2)误检率:被误检为肤色的非肤色像素数与原图像内被检测的所有非肤色像素数的比值。(3)检测速度:大部分应用领域需要在线实时地检测出肤色,如人脸识别,人脸跟踪,视频监控,Web敏感图像过滤等。在检测率和误检率达到满意的前提下,检测速度越快越好。(4)鲁棒性:在各种条件下,检测系统的适应能力。有些检测方法受复杂背景或者复杂光照的干扰,在背景较简单或正常光照时效果好,反之较差。肤色检测技术的发展经历了三个时期:即七十年代的早期研究时期,当时只采用了简单的特征技术
8、。70 到 90 年代的迷茫时期,由于硬件技术等各方面问题的存在,研究出现了停滞不前的局面。90 年代以来,由于社会经济的发展,身份验证的需要急剧增加,使得与生物识别技术相关的肤色检测技术也得到了前所未有的关注的高速发展阶段。当前,根据有没有涉及成像过程,可以将肤色检测方法分成两种基本类型:基于物理的方法和基于统计的方法。基于物理的方法则在肤色检测中引入光照与皮肤间的相互作用,通过研究肤色反射模型和光谱特性进行肤色检测。基于统计的肤色检测通过建立肤色统计模型进行肤色检测,主要包括两个步骤:颜色空间变换和肤色建模。2.颜色空间的选择在不同颜色空间中肤色的聚类情况是不一样的,而肤色与非肤色的易分离
9、度也是不相同的,是否存在一个最优的颜色空间,如何找到这样的颜色空间,大量的研究者为此付出了心血。常用的颜色空间包括RGB、Nrgb、TSL、HSV、HSL、HS、YIQ、YUV、YES、YCb Cr、CIE Lab、CIE Luv 等。Terrillon JC等在 9 种颜色空间(TSL,NCC rgb,CIE xy,CIE SH,HSV,YIQ,YES,CIE Luv,CIE Lab)上比较了利用单一高斯模型与混合高斯模型进行肤色检测的效果,他们发现利用单一高斯模型在亮度归一化后名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 25 页 -的 r-g 和 TSL空间中检测效果最好
10、,要优于更复杂的混合高斯模型,而混合高斯模型可以提高未归一化颜色空间上的检测效果。随后,Terrillon等发现在 NCC rgb 和 CIE xyz 颜色空间中最适合于进行肤色分割,肤色在这两个颜色空间中的分布的范围最小,并且最适合采用单高斯模型来拟和。Zarit等在 CIE Lab,Fleck HS,HSV,归一化 RGB,Ycr Cb五种颜色空间上,分别采用查表法与Bayes 决策法来检测,并对检测效果进行了比较,发现在使用查表法时,在 HSV和 Fleck HS 空间上的检测结果要优于其他三种颜色空间,而使用 Bayes 法时,颜色空间的选择对最终结果的影响有限。Fang比较了肤色在八
11、个空间(RGB、XYZ、YIQ、YUV、HSV、HIS、Luv 和 Lab)上的分布和分类情况发现无论是肤色聚集性还是肤色、非肤色样本的可分性,YUV和 YIQ都是各个色彩空间中最佳的。Jone和 Rehg认为尽管可以采用诸如YUV、HSV等色彩空间对肤色进行建模,但 RGB 颜色空间仍然为表述像素色彩信息的标准空间。从这些研究中不难发现一些结果是矛盾的,大家并没有在有效颜色空间上达成一致的观点。但有一个结果是统一的,就是肤色在任何空间中都具有聚集特性,不同的只是聚集的程度。3.肤色建模肤色模型是在一定颜色空间描述肤色分布规律的数学模型。模型中颜色特征的数学表达涉及到很多问题。首先要选择合适的
12、颜色空间来描述颜色特征;其次要采用一定的量化方法将颜色特征表达为向量的形式;最后还要定义一种相似度(距离)标准用来衡量图像之间在颜色上的相似性。根据对成像条件的了解,肤色模型可分为基于物理的模型和基于统计的模型,而统计模型则可进一步分为:参数、非参数和半参数三种类型。参数模型具有一个明确的函数形式,能够通过调整其可调参数来得到与样本数据集相适应的模型,而非参数模型没有任何的特定形式。半参数模型一般指神经网络,它们具有相同的函数形式,却有不同数目的隐式可调参数。最简单的非参数模型是阈值边界模型,由一组阈值规则构成,适用于对肤色分类精度要求低,光照条件比较稳定的场合,其主要困难是确定合适的颜色空间
13、及良好的决策规则。与此相反,基于归一化直方图的查找表是最精确的模型,它名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 25 页 -的每个柄直接存储了肤色概率,能够精细地描述肤色分布的概率密度而不管分布的内在复杂性,并隐含了分布的多模式复杂特性。非参数模型具有分类速度快的明显优势,不能进行内插和数据归纳是其主要缺陷。参数模型不同于非参数模型,他提供了一个肤色分布的非常简洁而明确的表示,具有低空间复杂性以及相对少的训练集的优势,能够通过内插来推广不完全的训练数据,单模式高斯模型、高斯混合模型和椭圆模型是三种常用的参数模型。不过,参数模型的拟合优度和性能很大程度上依赖相应颜色空间的肤色
14、分布形状。以神经网络为代表的半参数模型同时满足了模型精度与存储空间的折中需求,兼具参数模型和非参数模型的优点,占据的空间小,模型精度高,运行速度较快,其中以多层感知机和自适应组织映射网络的应用最为广泛。神经网络模型本质上是一种矢量量化手段,不过,其决策规则也隐含在网络结构中,网络神经元数目的确定也需要一定的经验。基于物理的模型是从皮肤的光学特性出发,结合已知的照明条件以及照相机特性,估计肤色可能的分布范围,试图实现肤色的光照不变性。Angclopoulou介绍了皮肤的生理结构以及皮肤反射的物理性质,分析了皮肤反射属性与皮肤表皮中黑色素的关系。作者认为最佳的皮肤反射模型是高斯及其一阶导数的线性组
15、合。Storring等根据漫反射模型、相机参数和光源的光谱为皮肤建立模型,并研究了皮肤图像的生成过程。根据光源的色温对皮肤的影响自适应地分割皮肤。Andersen 等假定皮肤颜色的RGB值位于漫反射矢量张成的空间中,并给出一种新的肤色建模方法。目前,研究的主要方法集中在基于统计方面,因为人的皮肤的颜色特征具有相对的稳定性并且和大多数背景物体的颜色相区别,对于旋转、表情等变化情况都能适用。肤色是人类对图像中皮肤区域最直观的感知特征。“皮肤颜色”不仅是物体的物理特征,更是一种感知现象,而且颜色信息可以进行快速处理。三、皮肤检测技术相关理论1.人体皮肤的组成皮肤覆盖于体表,具有保护机体、调节体温、分
16、泌排泄和感受刺激等功能。人体皮肤通常由三个部分构成,即:表皮、真皮、皮下组织,总厚度约为 1.55mm。常见光在皮肤表皮层中被黑色素吸收,在皮肤真皮层中则同时发生吸收和散名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 25 页 -射。无光泽的人体皮肤的主要肤色通常受到三个不同颜色因素的影响:皮肤表皮细胞中的黑色素、真皮及皮下组织中的胡萝卜素以及真皮中的毛细血管。而不同个体肤色在亮度上的差异性主要是由黑色素浓度引起的。在常用的基于统计方法的肤色检测与分割技术中,不同的光照效果会对检测结果造成很大影响,甚至导致肤色分割失败,因此考虑影响个体肤色差异性的因素,综合电磁辐射与皮肤相互物理
17、作用的肤色检测技术称为基于物理的肤色检测技术。该技术不在这里的讨论范围内。但这里研究了从光照补偿以及颜色校正出发解决光照条件对成像颜色的校正问题。2.数字图像所谓数字图像,是把画面分割成若干小点,称之为像素点,各像素的灰度值也是用离散数值即整数来表示的。数字图像包含固定的像素行数与列数,像素就像小方块,其数值范围通常在0 到 255 之间,像素值表示图像上各点的亮度。0表示最暗、255 表示最亮,或者反过来255 表示最暗、0 表示最亮,这与编码方案的不同有关。图像的数字化方式可以分为均匀采样、量化和非均匀采样、量化。所谓“均匀”指的是采样、量化为等间隔。图像数字化一般采用均匀采样和均匀量化方
18、式,采用非均匀采样与量化,会使问题复杂化,因此很少采用。一般来说,采样间隔越大,所得图像像素数越少,空间分辨率越低,成像质量就差,严重时出现像素呈块状的棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但同时数据量也会较大。量化级数越多,所得图像层次越丰富,灰度分辨率高,图像质量好,同时数据量也比较大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。所以应该根据实际应用选用不同的采样间隔和量化级数。特别是在这里的关于综合颜色信息和纹理信息的皮肤检测方法中,就必须对图像的灰度级数进行预处理以降低计算量。3.计算机视觉人可以通过视觉、听觉
19、、语言与外界交换信息,并且可用不同的方式表示相同的含义,而计算机却要求严格按照各种程序语言来编写程序,只有这样计算机才能运行。如何让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉和说话等能力。这就需要计算机必须具名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 25 页 -有逻辑推理和决策的能力。计算机视觉就是用各种成像系统代替视觉器官作为视觉信息输入手段,由计算机来代替大脑完成处理和解释,并根据解释结果做出相应的决策。计算机视觉的最终研究目标就是使计算机能像人那样通过对视觉信息的处理来观察和理解世界,从而对外界事物做出反应。在皮肤检测中
20、也同样会遇到相应的问题,即从一幅图像的描述中如何抽取出能够适应各种光照变化的肤色描述,从而得到肤色区域,就正如人的视觉系统可以在各种变化的光照条件下,清楚地辨认目标那样。人类的视觉系统是功能最强大和完善的,但人们并不能描述和解释自身的视觉系统是如何对信息进行处理的,因此通过对计算机视觉的研究、模拟,人们有可能逐步地揭开人类视觉的信息处理机制,从而了解人类的思维机制、推理机制等。因此,用计算机信息处理的方法研究人类视觉的机理,建立人类视觉的计算理论,也是一个非常重要和有趣的研究领域。同样的,通过其他途径,如神经解剖学、心理学等方面对人类视觉的研究,也会给计算机视觉的研究提供启发和指导,两者有相互
21、促进的作用。4.模式识别计算机视觉与皮肤检测有紧密关系,同样,模式识别理论对皮肤检测更具有直接的指导意义。模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。同时,模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着 20 世纪 40 年代计算机的出现以及 50 年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。模式识别在20 世纪 60 年代初迅速发展并成为一门新学科。功能较完善的识别系统在进行模式识别之前,首先要进行学习
22、或对它进行训练,即包括两个主要过程,学习训练和识别分类。具体包括 4 个主要环节,第一就是特征提取。无论是识别过程还是学习过程,都要对研究对象固有的、本质的重要特征或属性进行测量并将结果数字化,或者对目标进行分解产生基元并对其符号化,形成特征矢量或符号串、关系图,从而产生代表对象的模式,模式类中的个体在有些场合中也称为样本。用于学习与训名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共 25 页 -练的样本的类别应是已知的。另外,在进行特征提取之前一般还需要对目标的信息载体进行必要的预处理。第二就是特征的选择。通常能描述对象的元素很多,为了节约资源,节省计算机的存储空间以及特征提取的
23、代价,有时更是为了可行性,在保证满足分类识别正确率要求的条件下,按某种准则尽量选用对正确分类识别作用较大的特征,使得用较少的特征就能完成分类识别任务。这项工作表现为减少特征矢量的维数或符号字符数。第三就是学习和训练。为有效地让机器具有分类识别的功能,如同人类自身一样,人们应首先对它进行训练,将人类对知识和方法的识别以及分类识别对象的知识输入机器中,产生分类识别的规则和分析程序,这也相当于机器进行学习。这个过程一般要反复进行多次,不断地修正错误、改进不足,这包括修正特征提取方法、特征选择方案、判决规则参数及方法,最后使系统正确识别率达到设计要求。目前机器学习常需要人工干预,这个过程通常是人机交互
24、的。第四就是分类识别。在学习、训练之后所产生的分析规则及程序用于未知类别的对象的识别。需要指出的是,输入机器的人类分类识别的知识和方法以及有关对象知识越充分,这个系统的识别功能也就越强,同时正确率也就越高。有些分类过程例如聚类过程,似乎没有将有关对象的类的分布知识输入,实际上在选择相似性测度以及采用哪种聚类方法时已经用到了对象的一些知识,也在一定程度上加入了人类的知识。模式识别的基本方法主要包括:统计模式识别,句法模式识别,模糊模式识别,人工神经网络方法和人工智能方法等几种。基于统计方法的模式识别系统主要由 4 个部分组成:数据获取、预处理、特征提取和选择、分类决策。第二节皮肤镜图像提取黑色素
25、瘤技术一、皮肤镜图像概述1.背景恶性黑色素瘤,通常被人们称为“恶性黑色素瘤”或黑素瘤是皮肤癌症的一种。它是由于皮肤表皮基底部的黑色素细胞产生病变进而恶化而形成的一种恶性肿瘤。黑色素瘤的发病部位常见于皮肤表面,也可产生于眼部,鼻腔等处,是一类侵袭程度高,转移速度快,并且预后治疗效果不理想的皮肤癌症。在黑色素瘤的发病人群中,年龄分布主要集中在1544 岁,其中,年轻成年人占 1030,名师资料总结-精品资料欢迎下载-名师精心整理-第 8 页,共 25 页 -中年人占 3040,老年人占 4050,男性患者平均发病年龄为35.8 岁,女性患者则为 32.0 岁。在皮肤癌症的死亡病例中,恶性黑色素瘤是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年皮肤检测技术 2022 皮肤 检测 技术

限制150内