2022年正态分布的由来 .pdf
《2022年正态分布的由来 .pdf》由会员分享,可在线阅读,更多相关《2022年正态分布的由来 .pdf(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正态分布的由来正态分布是最重要的一种概率分布。正态分布概念是由德国的数学家和天文学家 Moivre(棣莫佛)于 1733 年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布。高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。高斯是一个伟大的数学家,重要的贡献不胜枚举。但现今德国 10 马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评
2、价其优越性,其全部影响还不能充分看出来。这要到20 世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于 1810 年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(G.Hagen)在一篇论文中正式提出了这个学说。其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差”之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛
3、的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性)为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 3 页 -T 分布的由
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年正态分布的由来 2022 正态分布 由来
限制150内