勾股定理导学案(12页).doc
《勾股定理导学案(12页).doc》由会员分享,可在线阅读,更多相关《勾股定理导学案(12页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-勾股定理导学案-第 11 页第一章 勾股定理导学案第1课时 探索勾股定理(1) 学习目标: 1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。 2 、会初步利用勾股定理解决实际问题。 学习过程:一、课前预习:1、三角形按角的大小可分为: 、 、 。2、三角形的三边关系: 三角形的任意两边之和 ;任意两边之差 。3、 直角三角形的两个锐角 ;4、在RtABC中,两条直角边长分别为a、b,则 这个直角三角形的面积可以表示为: 。 二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;直角三角形1直角边a直角边b
2、斜边c三边关系满足关系34直角三角形2直角边a直角边b斜边c三边关系满足关系513(2)猜想:直角三角形的三边满足什么关系? (3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。猜想:三、合作探究:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?图形A的面积B的面积C的面积A、B、C面积的关系图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。勾股定理:直角三角形 等于 ; 几何语言表述:如图1.1-1,在RtABC中,C 90, 则: ; 图1.1-1若BC=a,AC=b,AB=c,则上面的定理可以
3、表示为: 。 四、课堂练习:1、求下图中字母所代表的正方形的面积2、求出下列各图中x的值。3.如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?五、当堂检测:1 在ABC中,C=90,(1)若BC=5,AC=12,则AB= ;(2)若BC=3,AB=5,则AC= ;(3)若BCAC=34,AB=10,则BC= ,AC= .(4) 若AB=8.5,AC=7.5,则BC= 。2某农舍的大门是一个木制的矩形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木棒加固,木棒的长为 .3在RtABC中,C=90,AC=5,AB=13,则B
4、C= ,该直角三角形的面积为 。4直角三角形两直角边长分别为5cm,12cm,则斜边上的高为 .5.若直角三角形的两直角边之比为3:4,斜边长为20,则斜边上的高为 。ABCD7cm能力提升:6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为_cm2.7.一个直角三角形的三边长为3、4和a,则以a为半径的圆的面积是 。8.如图,点C是以AB为直径的半圆上一点,ACB=90,AC=3,BC=4,则图中阴影部分的面积是 。9等腰三角形的腰长为13cm,底边长为10cm,则其面积为 10ABC中,AB15,AC13,高AD
5、12,求ABC的周长。第2课时 探索勾股定理(2)学习目标:1、 掌握勾股定理,理解利用拼图验证勾股定理的方法。2、 能运用勾股定理解决一些实际问题。 学习过程:一、知识回顾:1、勾股定理: 2、求下列直角三角形的未知边的长3、在一个直角三角形中,两条直角边分别为,斜边为:(1)如果,则 ,面积为 ; (2)如果,则三角形的周长为 ,面积为 ;二、 自主学习:利用拼图验证勾股定理(课前准备8个全等的直角三角形):活动一:用四个全等的直角三角形拼出图1,并思考:1拼成的图1中有_个正方形,_个直角三角形。2图中大正方形的边长为_,小正方形的边长为_。3你能请用两种不同方法表示图1中大正方形的面积
6、,列出一个等式,验证勾股定理吗? 22 图2活动二:你能利用类似的方法由图2得到勾股定理吗? 思考:用四个全等的直角三角形,通过拼图验证勾股定理,你还有那些方法?三、 合作探究:例1 、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000米处,过了25秒,飞机距离女孩头顶5000米处,则飞机的飞行速度是多少?四、当堂检测:基础巩固:1、如右图,AD = 3,AB = 4,BC = 12,则CD=_; 2、如图,阴影部分的面积为 ;3、一个直角三角形的三边分别为3,4,则 4、若等腰三角形的腰为10cm,底边长为16cm,则它的面积为 ;5.如图,从电线杆离地面6米处向地面拉
7、一条长10米的缆绳,这条缆绳在地面的固定点距离电线杆底部有 米。 6.一直角三角形的斜边比直角边大2,另一直角边长为6,则斜边长为 ;7.直角三角形一直角边为5厘米、斜边为13厘米,那么斜边上的高是 ; 8.直角三角形的三边长为连续偶数,则其周长为 ;能力提升:9.小东与哥哥同时从家中出发,小东以6km/h的速度向正北方向的学校走去,哥哥以8km/h的速度向正南方向走去,半小时后,他们相距 W10、如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M,O,Q三城市的沿江高速的建设成本是100万元千米,该沿江高速的造价是多少?11.如图,AB是电线杆,从距离地面12M高的A处,向
8、离电杆5M的B处埋线,并埋入地下1.5M深,求拉线长多少米12、如图,矩形纸片ABCD的边AB=10,BC=6,E为BC上一点将矩形纸片沿AE折叠,点B恰好落在CD边上的点G处,求BE的。13、如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,请你求出旗杆在离底部多少米的位置断裂吗?14、有一块直角三角形纸片,两直角边AC=6,BC=8,现将ABC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,求CD的长15、如图1-4,一架梯子长25米,斜靠在一面墙上,梯子顶端离地面15米,要使梯子顶端离地24米,则梯子的底部在水平方向上应滑动多少米? 第
9、3课时 能得到直角三角形吗学习目标:掌握直角三角形的判别条件,并能进行简单的应用。学习过程:一、复习回顾:勾股定理:条件: 结论: 二、自主学习:1、分别以下列每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?(1)3, 4, 5, (2)6, 8, 10 (3)9,12,15 2、勾股逆定理:条件: 结论: 3、勾股数: 。下列几组数是否为勾股数?说说你的理由。 (1)12,18,22 (2) 9, 12, 15 ()12,35,36 (4)15,36,39 三、合作探究:例1、一个零件的形状如图所示,按规定这个零件中和都应为直角。工人师傅量得AB=3,AD=4,BD=5,BC=
10、12,DC=13,这个零件符合要求吗?例2、如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?例3、(1)如果将一组勾股数扩大相同的倍数,得到的还是勾股数吗?填写下表,并验证。2倍3倍4倍3,4,56,8,105,12,1315,36,398,15,1732,60,687,24,25(2)如果一直角三角形的三边长为a、b、c(c是斜边长),将三边长都扩大k倍(k为任意正整数)后,得到的还是直角三角形吗?说明理由。W四、当堂检测:基础巩固:1. 下列说法正确的是( )A. 若a、b、c是的三边,则B. 若a、b、c是的三边,则C. 若a、b、c是的三边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 导学案 12
限制150内