勾股定理应用题(3页).doc
《勾股定理应用题(3页).doc》由会员分享,可在线阅读,更多相关《勾股定理应用题(3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-勾股定理应用题-第 3 页1、如图,RtABC中,C=90,AD平分CAB,DEAB于E,若AC=6,BC=8,CD=3(1)求DE的长;(2)求ADB的面积2、如图所示,ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DEDF,若BE=12,CF=5求线段EF的长。3、通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,EAF=45,连接EF,则EF=BE+DF,试说明理由。(1)思路梳理AB=CD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD
2、重合。ADC=B=90,FDG=180,点F、D、G共线。根据_,易证_,得EF=BE+DF。(2)类比引申如图2,四边形ABCD中,AB=AD,BAD=90点E、F分别在边BC、CD上,EAF=45。若B、D都不是直角,则当B与D满足等量关系_时,仍有EF=BE+DF。(3)联想拓展如图3,在ABC中,BAC=90,AB=AC,点D、E均在边BC上,且DAE=45。猜想BD、DE、EC应满足的等量关系,并写出推理过程。1、考点:角平分线的性质;勾股定理分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算ADB的面积解答:解:(1)AD平分CAB,
3、DEAB,C=90,CD=DE,CD=3,DE=3;(2)在RtABC中,由勾股定理得:AB=10,ADB的面积为SADB=ABDE=103=15点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等3、解析:(1)SAS(1分) AFE(2分)(2)B+D=180(4分)(3)解:BD2+EC2=DE2.(5分)AB=AC,把ABD绕A点逆时针旋转90至ACG,可使AB与AC重合.ABC中,BAC=90.ACB+ACG=ACB+B=90,即ECG=90.EC2+CG2=EG2.(7分)在AEG与AED中,EAG=EAC+CAG=EAC+BAD=90-EAD=45=EAD,又AD=AG,AE=AE,AEGAED.DE=EG.又CG=BD,BD2+EC2=DE2.(9分)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 应用题
限制150内