新人教版高中数学算法与程序框图教案必修三(19页).doc
《新人教版高中数学算法与程序框图教案必修三(19页).doc》由会员分享,可在线阅读,更多相关《新人教版高中数学算法与程序框图教案必修三(19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-新人教版高中数学算法与程序框图教案必修三-第 19 页第一章 算法初步本章教材分析 算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助. 本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也
2、为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情. 在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点. 本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律. 本章教学时间约需12课时,具体分配如下(仅供参考):1.1.1 算法的概念约1课时1.1.2 程序框图与算法的基本逻辑结构约4课时1.2.1 输入语
3、句、输出语句和赋值语句约1课时1.2.2 条件语句约1课时1.2.3 循环语句约1课时1.3算法案例约3课时本章复习约1课时1.1 算法与程序框图1.1.1 算法的概念一、教材分析 算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.二、教学目标1、 知识与技能:(1)了解算法的
4、含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。2、 过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。3、 情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的
5、一各有力工具,进一步提高探索、认识世界的能力。三、重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.四、课时安排1课时五、教学设计(一)导入新课 思路1(情境导入) 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容算法. 思路2(情境导入) 大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.上述
6、步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入) 算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.(二)推进新课、新知探究、提出问题(1)解二元一次方程组有几种方法?(2)结合教材实例总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解.(6)请同学们总
7、结算法的特征.(7)请思考我们学习算法的意义.讨论结果:(1)代入消元法和加减消元法.(2)回顾二元一次方程组的求解过程,我们可以归纳出以下步骤:第一步,+2,得5x=1.第二步,解,得x=.第三步,-2,得5y=3.第四步,解,得y=.第五步,得到方程组的解为(3)用代入消元法解二元一次方程组我们可以归纳出以下步骤:第一步,由得x=2y1.第二步,把代入,得2(2y1)+y=1.第三步,解得y=.第四步,把代入,得x=21=.第五步,得到方程组的解为(4)对于一般的二元一次方程组 其中a1b2a2b10,可以写出类似的求解步骤: 第一步,b2-b1,得 (a1b2a2b1)x=b2c1b1c
8、2. 第二步,解,得x=. 第三步,a1-a2,得(a1b2a2b1)y=a1c2a2c1. 第四步,解,得y=. 第五步,得到方程组的解为(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等. 在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.逻辑性:算法从开始的“第一步”直到“最后一步”之
9、间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.(三)应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是
10、否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用26除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二
11、步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练 请写出判断n(n2)是否为质数的算法.分析:对于任意的整数n(n2),若用i表示2(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,
12、再执行同样的操作. 这个操作一直要进行到i的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2. 第三步,用i除n,得到余数r. 第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示. 第五步,判断“i(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.例2 写出用“二分法”求方程x2-2=0 (x0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x0)的解就是函数f(x)的零点. “二分法”的基本思想是:把函数f(x)的零点所在的区间a,b(满足f(a)f(b)0)“一分为二”,得到a
13、,m和m,b.根据“f(a)f(m)0”是否成立,取出零点所在的区间a,m或m,b,仍记为a,b.对所得的区间a,b重复上述步骤,直到包含零点的区间a,b“足够小”,则a,b内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间a,b,满足f(a)f(b)0.第三步,取区间中点m=.第四步,若f(a)f(m)2)是否为质数”的算法.解:程序框图如下:点评:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练 观察下面的程序框图,指出该算法解决的问题.解:
14、这是一个累加求和问题,共99项相加,该算法是求的值.例2 已知一个三角形三条边的边长分别为a,b,c,利用海伦秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c,则三角形的面积为S=),其中p=.这个公式被称为海伦秦九韶公式)算法分析:这是一个简单的问题,只需先算出p的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c.第二步,计算p=.第三步,计算S=.第四步,输出S.程序框图如下:点评:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 高中数学 算法 程序 框图 教案 必修 19
限制150内