方向导数与梯度 (2)课件.ppt
《方向导数与梯度 (2)课件.ppt》由会员分享,可在线阅读,更多相关《方向导数与梯度 (2)课件.ppt(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于方向导数与梯度(2)第1页,此课件共34页哦一、方向导数的定义 讨论函数 在一点P沿某一方向的变化率问题),(yxfz 引射线引射线内有定义,自点内有定义,自点的某一邻域的某一邻域在点在点设函数设函数lPPUyxPyxfz)(),(),().(),(,pUPlyyxxPlx 上的另一点且上的另一点且为为并设并设为为的转角的转角轴正向到射线轴正向到射线设设 oyxlP xyP第2页,此课件共34页哦|PP,)()(22yx ),(),(yxfyyxxfz 且且,z 考虑考虑当 沿着 趋于 时,P Pl ),(),(lim0yxfyyxxf 是否存在?的的方方向向导导数数沿沿方方向向则则称称这
2、这极极限限为为函函数数在在点点在在,时时,如如果果此此比比的的极极限限存存趋趋于于沿沿着着当当之之比比值值,两两点点间间的的距距离离与与函函数数的的增增量量定定义义lPPlPyxPPyxfyyxxf 22)()(),(),(第3页,此课件共34页哦记为.),(),(lim0 yxfyyxxflf 方向导数的几何意义 ),(),(lim),(0000000yxfyyxxflyxfx 第4页,此课件共34页哦 yyyxxx 00过直线 作平行于 z 轴的平面 与曲面 z=f(x,y)所交的曲线记为 C C上上考考察察在在 对对应应的的方方向向与与lPP0 ),(),(0000yxfyyxxf 表示
3、C 的割线向量 的的交交角角的的正正切切值值与与lPP0即的的斜斜率率关关于于lPP0时时当当0),(),(0000yxyyxx 即割线转化为切线第5页,此课件共34页哦上式极限存在就意味着当点),(00yyxx ),(00yx趋于点 曲线C在点 P0 有唯一的切线它关于 方向的斜率l就是方向导数),(00yxlf LCM0TP0PMl第6页,此课件共34页哦证明由于函数可微,则增量可表示为)(),(),(oyyfxxfyxfyyxxf 两边同除以,得到第7页,此课件共34页哦 )(),(),(oyyfxxfyxfyyxxf 故有方向导数 lf ),(),(lim0yxfyyxxf .sinc
4、os yfxf cossin例例 1 1 求求函函数数yxez2 在在点点)0,1(P处处沿沿从从点点 )0,1(P到到点点)1,2(Q的的方方向向的的方方向向导导数数.第8页,此课件共34页哦解这这里里方方向向l即即为为1,1 PQ,故故x轴轴到到方方向向l的的转转角角4 .;1)0,1(2)0,1(yexz,22)0,1(2)0,1(yxeyz所所求求方方向向导导数数 lz)4sin(2)4cos(.22 例例 2 2 求求函函数数22),(yxyxyxf 在在点点(1,1)沿沿与与x轴轴方方向向夹夹角角为为 的的方方向向射射线线l的的方方向向导导数数.并并问问在在怎怎样样的的方方向向上上
5、此此方方向向导导 数数有有 (1)最最大大值值;(2)最最小小值值;(3)等等于于零零?第9页,此课件共34页哦解由方向导数的计算公式知 sin)1,1(cos)1,1()1,1(yxfflf ,sin)2(cos)2()1,1()1,1(xyyx sincos),4sin(2 故(1)当当4 时时,方方向向导导数数达达到到最最大大值值2;(2)当当45 时时,方方向向导导数数达达到到最最小小值值2;(3)当当43 和和47 时时,方向导数等于方向导数等于 0.第10页,此课件共34页哦推广可得三元函数方向导数的定义对于三元函数对于三元函数),(zyxfu ,它在空间一点,它在空间一点),(z
6、yxP沿着方向沿着方向 L的方向导数的方向导数,可定义,可定义为为,),(),(lim0 zyxfzzyyxxflf (其中其中222)()()(zyx )设设方方向向 L 的的方方向向角角为为 ,cos x,cos y,cos z.coscoscos zfyfxflf 第11页,此课件共34页哦例例 3 3 设设n是是曲曲面面632222 zyx 在在点点)1,1,1(P处处的的指指向向外外侧侧的的法法向向量量,求求函函数数2122)86(1yxzu 在在此此处处沿沿方方向向n的的方方向向导导数数.解令,632),(222 zyxzyxF,44 PPxxF,66 PPyyF,22 PPzzF
7、故 zyxFFFn ,2,6,4,142264222 n方向余弦为,142cos ,143cos .141cos 第12页,此课件共34页哦PPyxzxxu22866 ;146 PPyxzyyu22868 ;148 PPzyxzu22286 .14 故PPzuyuxunu)coscoscos(.711 第13页,此课件共34页哦二、梯度的概念?最快沿哪一方向增加的速度函数在点 P由由方方向向导导数数公公式式知知问题:第14页,此课件共34页哦sin,cos,yfxf sincosyfxflf eyxgradf ),(,cos|),(|yxgradf 其其中中),(,eyxgradf 当当1),
8、(cos(eyxgradf时时,lf 有最大值有最大值.函数在某点的梯度是这样一个向量,它的函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致方向与取得最大方向导数的方向一致,而它的模为而它的模为方向导数的最大值梯度的模为方向导数的最大值梯度的模为 22|),(|yfxfyxgradf.gradfgradf P第15页,此课件共34页哦当当xf 不不为为零零时时,x轴轴到到梯梯度度的的转转角角的的正正切切为为xfyf tan),(yxfz 在几何上 表示一个曲面曲面被平面 所截得cz ,),(czyxfz所得曲线在xoy面上投影如图oyx1),(cyxf2),(cyxfPcy
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方向导数与梯度 2课件 方向 导数 梯度 课件
限制150内