新北师大版数学七年级上册一元一次方程应用题专题(11页).doc
《新北师大版数学七年级上册一元一次方程应用题专题(11页).doc》由会员分享,可在线阅读,更多相关《新北师大版数学七年级上册一元一次方程应用题专题(11页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-新北师大版数学七年级上册一元一次方程应用题专题-第 10 页新北师大版数学七年级上册一元一次方程应用题专题(1)和、差、倍、分问题此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。例:把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可
2、少租一辆,且余30个座位.请问参加春游的师生共有多少人?(2)等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为: 形状面积变了,周长没变;原体积变形体积。例:要锻造一个半径为5cm,高为8cm的圆柱形毛坯,应截取截面半径为4cm的圆钢多长?变式1:直径为30 cm,高为50cm的圆柱形瓶里放满了饮料,现把饮料倒入底面直径为10cm 的圆柱形小杯,刚好倒满30杯,求小杯的高变式2:用一根长为10米的铁丝围成一个长方形,(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?(2)使得
3、长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化? (3)调配问题。从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。常见题型有:既有调入又有调出;只有调入没有调出,调入部分变化,其余不变;只有调出没有调入,调出部分变化,其余不变。例:甲、乙两个仓库要向A、B两地运送水泥,已知甲仓库可调100吨水泥乙仓库可调水泥80吨,A地需70吨水泥,B地需 110吨水泥,两仓库到A,B两地的路程和运费如下表 路程(千米) 运费(元/千米.吨) 甲仓库乙仓库甲仓库乙仓库A地 20 25 12 12B地
4、 25 20 10 8(1)设甲仓库运往A地水泥x 吨,试用x的一次式表示总运费W?(2)你能确定当甲、乙两仓库各运往A,B多少吨水泥时,总运费461000元?最省的总运费是多少?变式1:甲仓库有存粮120吨,乙仓库有存粮食80吨,现从甲库调部分到乙库,若要求调运后甲库的存粮是乙库的 2/3 ,问应从甲库调多少吨粮食到乙库?变式2:某公司原有职员60名,其中女职员占20%,今年又有几位男职员辞职,公司又补招了3名女职员,女职员的比例提高到25%,问公司离开公司的男职员一共有几人?(4)行程问题。要掌握行程中的基本关系:路程速度时间。相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总
5、路程或同时走时两人所走的时间相等为等量关系。甲走的路程+乙走的路程=全路程追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。 同时不同地:甲的时间=乙的时间 甲走的路程-乙走的路程=原来甲、乙相距的路程 同地不同时:甲的时间=乙的时间-时间差 甲的路程=乙的路程环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。船(飞机)航行问题:相对运动的合速度关系是:顺水(风)速度静水(无风)中速度水(风)流速度;逆水(风)速度静水(无风)中速度水(风)流速度。 车上(离)桥问
6、题: 车上桥:指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 车离桥:指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 车过桥:指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长 车在桥上:指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长 注意:行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。 例:(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。已知甲的速度为15千米/小时,乙的速度为45千米/小时。(1)经过多少时间两人相遇? (2)相遇后经过多少时间乙到达A
7、地?变式:甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。出发后经3 小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A地。问甲、乙行驶的速度分别是多少?例:(追及问题)市实验中学学生步行到郊外旅行。(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距3千米? (4)两队何时相距8千米?变式1:甲
8、,乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15米,两人同时登上山顶。甲用多少时间登山?这座山有多高?变式2:甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人均匀速前进。已知两人上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。求A,B两地之间的距离。例:(环型跑道问题)一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑250米。(1)若两人同时同地背向而行,几分钟后两人首次相遇?(2)若两人同时同地同向而行,几分钟后两人首次相遇?变式1:一条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙
9、每分钟跑250米。(1)若两人同时同地背向而行,几分钟后两人二次相遇?(2)若两人同时同地同向而行,几分钟后两人二次相遇?例:(顺、逆水问题)一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?变式1:一架飞机在两城之间飞行,风速为24千米/小时。顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。例:(错车问题)在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为24米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?变式1:一列火车匀速行驶,经过一条长300m
10、的隧道需要20秒的时间。隧道的顶上有一盏灯 ,垂直向下发光,灯光照在火车上的时间是10秒,根据以上数据,你能求出火车的长度?变式2:在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?(5)利润率问题。其数量关系是:利润售价进价=进价利润率;利润率利润进价100=(售价-进价)/进价100,售价=进价+利润=进价(1+利润率)=标价折扣率,注意:打几折销售就是按原价的十分之几出售。例1:某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少
11、元?例2:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是_元,利润率是_. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_元.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是_元,利润率是_. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_元.变式3:一件商品每件的进价为250元,按标价的九折销时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价
12、的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?(6)匹配问题:例:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要
13、在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。一个盒身与两个盒底配成一套罐头盒。现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?(7)数字问题。要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和。例1:有一列数,按一定规律排列成1,-3,9,-27,81,-243,。其中某三个相邻数的和是-170
14、1,这三个数各是多少?例2:三个连续奇数的和是327,求这三个奇数。变式1:三个连续偶数的和是516,求这三个偶数。变式2:如果某三个数的比为2:4:5,这三个数的和为143, 求这三个数为多少?变式3:已知三个连续奇数的和比它们相间的两个偶数的和多15,求这三个连续奇数。例:一个两位数,十位上的数字与个位上的数字之和是7,如果把这个两位数加上45,那么恰好成为个位上数字与十位上数字对调后组成的两位数,试求这个两位数。变式1:一个两位数,十位数字比个位数字大1,十位数字与个位数字之和是这个两位数的1/6,求这个两位数。变式2:一个三位数,三个数位上的数字和是15,百位上的数比十位上的数多5,个
15、位上的数字是十位上的数字的3倍,求这个三位数。(8)年龄问题其基本数量关系: 大小两个年龄差不会变。这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。例:父子二人今年年龄之和为40岁,已知两年前父亲年龄是儿子的8倍,那么两年前父子二人各几岁?变式1:王丹同学今年12岁,她爸爸今年36岁,几年后爸爸的年龄是王丹年龄的2倍?变式2:孙子问爷爷多少岁,爷爷说我像你这么大时你才2岁,你长我这么大时,我就128岁了,求爷爷今年多少岁?(9)日历问题 日历上数字的规律:上下相差7,左右相差1例:(1)在一份日历中,任意框出一个竖列上相邻的四个数,观察他们之间是什么关系?如果框出的四个数的和为
16、58,这四天分别是几号?(2)如果用一个正方形所圈出的4个数的和为76,这四天分别是几号?变式1:在某张月历中, 一个竖列上相邻的四个数的和是50,求出这四个数.变式2:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?变式3:爷爷的生日那天的上、下、左、右4个日期的和为80, 你能说出爷爷的生日是几号吗?(10)工程问题其基本数量关系:工作总量工作效率工作时间; 合做的效率各单独做的效率的和。当工作总量未给出具体数量时, 常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。填空(1)甲每天生产某种零件80个,3天能生产 个零件。(2)甲每天生产某种零件80个,乙每天生产
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 数学 年级 上册 一元一次方程 应用题 专题 11
限制150内