2022年2022年量子论的哥本哈根解释 .pdf
《2022年2022年量子论的哥本哈根解释 .pdf》由会员分享,可在线阅读,更多相关《2022年2022年量子论的哥本哈根解释 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、量子论的哥本哈根解释-量子论的哥本哈根解释是从一个佯谬出发的。物理学中的任何实验,不管它是关于日常生活现象的,或是有关原子事件的,都是用经典物理学的术语来描述的。经典物理学的概念构成了我们描述实验装置和陈述实验结果的语言。我们不能也不应当用任何其他东西来代替这些概念。然而,这些概念的应用受到测不准关系的限制。当使用这些概念时,我们必须在心中牢记经典概念的这个有限的适用范围,但我们不能够也不应当企图去改进这些概念。为了更好地了解这个佯谬,比较一下在经典物理学和量子论中对一个实验进行理论解释的程序是有用的。譬如,在牛顿力学中,我们要研究行星的运动,可以从测量它的位置和速度开始。只要通过观测推算出行
2、星的一系列坐标值和动量值,就可以将观测结果翻译成数学。此后,运动方程就用来从已定时间的这些坐标和动量值推导出晚些时候系统的坐标值或任何其他性质,这样,天文学家就能够预言系统在晚些时候的性质。例如,他能够预言月蚀的准确时间。在量子论中,程序稍有不同。例如,我们可能对云室中一个电子的运动感兴趣,并且能用某种观测决定电子的初始位置和速度。但是这个测定将不是准确的;它至少包含由于测不准关系而引起的不准确度,或许还会由于实验的困难包含更大的误差。首先正是由于这些不准确度,才容许我们将观测结果翻译成量子论的教学方案。写出的几率函数是代表进行测量时的实验状况的,其中甚至包含了测量的可能误差。这种几率函数代表
3、两种东西的混合物,一部分是事实,而另一部分是我们对事实的知识。就它选定初始时间的初始状说的几率为1(即完全确定)这一点说,它代表了事实:电子在被观测到的位置以被观测到的速度运动;被观测到 意指在实验的准确度范围内被观测到。而就另一个观测者或许能够更准确地知道电子的位置这一点说,它则代表我们的知识。实验的误差并不(至少在某种程度上)代表电子的性质,而表示了我们对电子的知识的缺陷。这种知识的缺陷也是由几率函数表示的。在经典物理学中,当在进行精细的研究时,人们同样应当考虑到观测的误差。结果,人们就得到关于坐标和速度的初始值的几率分布,因此也就得到很类似于量子力学中的几率函数的某种东西。只是量子力学中
4、由于测不准关系而必有的测不准性,在经典物理学中是没有的。当量子论中的几率函数已在初始时间通过观测决定了以后,人们就能够从量子论定律计算出以后任何时间的几率函数,并能由此决定一次测量给出受测量的名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 7 页 -某一特殊值的几率。例如,我们能预测以后某一时间在云室中某一给定点发现电子的几率。应当强调指出,无论如何,几率函数本身并不代表事件在时间过程中的经过。它只代表一些事件的倾向和我们对这些事件的知识。只有当满足一个主要条件时:例如作了决定系统的某种性质的新测量时,几率函数才能和实在联系起来。只有那时,几率函数才容许我们计算新测量的可能结果。
5、而测量结果还是用经典物理学的术语叙述的。由此可见,对一个实验进行理论解释需要有三个明显的步骤:(1)将初始实验状况转达成一个几率函数;(2)在时间过程中追踪这个几率函数;(3)关于对系统所作新测量的陈述,测量结果可以从几率函数推算出来。对于第一个步骤,满足测不难关系是一个必要的条件。第二步骤不能用经典概念的术语描述:这里没有关于初始观测和第二次测量之间系统所发生的事情的描述。只有到第三个步骤,我们才又从 可能转变到 现实。让我们用了个简单的理想实验来演示这样三个步骤。前面已经说过,原子是由一个原子核和环绕原子核运动的电子所组成;前面也已论述过,电子轨道的概念是可疑的。人们或许会主张,至少原则上
6、应当能够观察到轨道中的电子。人们可以简单地通过一个分辨本领非常高的显微镜来观看原子,这样就应该能看到在轨道中运动的电子。当然,使用普通光的显微镜是不能达到这样高的分辨本领的,因为位置测量的不准确度决不能小于光的波长。但是一个用波长小于原子大小的 射线的显微镜将能做到这一点。这样的显微镜尚未被制造出来,但这不应当妨碍我们讨论这个理想实验。第一个步骤,即将观测结果转达成一个几率函数,是可能做到的吗,只有在观测后满足测不准关系时,这才是可能的。电子的位置可以观测得这样准确,其准确度随 射线的波长而定。在观测前电子可以说实际上是静止的。但是在观测作用过程中,至少有一个 射线的光量子必须通过显微镜,并且
7、必须首先被电子所偏转。因此,电子也被光量子所撞击,这就改变了它的动量和速度。人们能够证明,这种变化的测不准性正好大到足以保证测不准关系的成立。因此,关于第一个步骤,没有丝毫困难。同时,人们能够很容易理解没有观测电子环绕原子核的轨道的方法。第二个步骤在于显示一个不绕原子核运动而是离开原子的波包,因为第一个光量子已将电子从原子中打出。如果 射线的波长远小于原子的大小,射线的光量子的动量将远大于电子的原始动量。因此,第一个光量子足以从原子中打出电子,并且人们决不能观测到电子轨道中另外的点;因此,也就没有通常意义的轨道了。下一次观测 第三个步骤 将显示电子离开原子的路线。两次相继观测之间所发生的事情,
8、一般是完全无法描述的。当然,人们总想这样说:在两次观测之间,电子必定要处在某些地方,因而必定也描绘出某种路线或轨道,即使不可能知道是怎样一条路线。这在经典物理学中是一个合理的推论。但是,在量子论中,我们将在后面看出,这是语言的不合理的误用。我们可以暂时不去管这个警告究竟是指我们谈论原子事件的方法还是指原子事件本身,究竟它所涉及的是认识论还名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 7 页 -是本体论。但在任何情况下,我们对原子粒子的行为作任何陈述时,措辞都必须非常小心。实际上我们完全不需要说什么粒子。对于许多实验,说物质波却更为便利;譬如,说环绕原子核的驻立物质波就更为便利。
9、但是,如果不注意测不准关系所给出的限制,这样一种描述将和另一种描述直接矛盾。通过这些限制,矛盾就避免了。使用 物质波 是便利的,举例说,处理原子发射的辐射时就是这样。辐射以它的频率和强度提供了原子中振荡着的电荷分布的信息,因而波动图象比粒子图象更接近于真理。因此,玻尔提倡两种图象一并利用,他称它们是互补的。这两种图象当然是相互排斥的,因为一个东西不能同时是一个粒子(即限制平很小体积内的实体而又是一个波(即扩展到一个大空间的场),但二者却互相补充。摆弄这两种图象,从一种图象转到另一种图象,然后又从另一种图象转回到原来的图象,我们最终得到了隐藏在我们的原子实验后面的奇怪的实在的正确印象。玻尔在量子
10、论解释的好几个地方使用了互补性 概念。关于粒子位置的知识是和关于它的速度或动量的知识互补的。如果我们以高度的准确性知道了其中一个,我们就不能以高度的准确性知道另一个;但为了决定系统的行为,我们仍须两个都知道。原子事件的空间时间描述是和它们的决定论描述互补的。几率函数服从一个运动方程,就象坐标在牛顿力学中那样;它随时间的变化是被量子力学方程完全决定了的,但它不容许对原子事件在空间和时间中进行描述。另一方面,观测要求在空间和时间中对系统进行描述,但是,由于观测改变了我们对系统的知识,它也就破坏了几率函数的已定的连续性。一般地讲,关于同一实在的两种不同描述之间的二象性已不再是一个困难了,因为我们已经
11、从量子论的数学形式系统得知,矛盾是不能产生的。两种互补图象一波和粒子 间的二象性也很清楚地表现在数学方案的灵活性中。数学形式系统通常是仿照牛顿力学中关于粒子的坐标和动量的运动方程写出的。但通过简单的变换,就能把它改写成类似于关于普通三维物质波的波动方程。因此,摆弄不同的互补国象的这种可能性类似于数学方案的不同变换;它并不给量子论的哥本哈根解释带来任何困难。然而,当人们提出了这样一个著名的问题:但是在原子事件中 真正发生了什么呢?这时,了解这种解释的真正困难就产生了。前面说过,一次观测的机构和结果总是能用经典概念的术语来陈述的。但是,人们从一次观测推导出来的是一个几率函数,它是把关于可能性(或倾
12、向)的陈述和关于我们对事实的知识的陈述结合起来的一种数学表示式。所以我们不能够将一次观测结果完全客观化,我们不能描述这一次和下一次观测间发生的事情。这看来就象我们已把一个主观论因素引入了这个理论,就象我们想说:所发生的事情依赖于我们观测它的方法,或者依赖于我们观测它这个事实。在讨论这个主观论的问题之前,必须完全解释清楚,为什么当一个人试图描述两次相继进行的观测之间所发生的事情时,他会陷入毫无希望的困难。名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 7 页 -为此目的,讨论下述理想实验是有好处的,我们仅沿一个小单色光源向一个带有两个小孔的黑屏辐射。孔的直径不可以比光的波长大得太多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年2022年量子论的哥本哈根解释 2022 量子论 哥本哈根 解释
限制150内