2022年神经网络在金属基复合材料及其制备中的应用 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年神经网络在金属基复合材料及其制备中的应用 .pdf》由会员分享,可在线阅读,更多相关《2022年神经网络在金属基复合材料及其制备中的应用 .pdf(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人工神经网络原理及其在机械工程中的应用1 目录目录.1引言.2第 1 章 人工神经网络 .21.1 人工神经元模型.21.2 网络结构及工作方式.31.3 神经网络的学习.41.3.1 学习方式.41.3.2 学习算法.5第 2 章 人工神经网络在金属基复合材料及其制备中的应用.62.1 神经网络在复合材料性能预测方面的应用.62.1.1 神经网络在预测复合材料摩擦性能方面的应用.62.1.2 复合材料孔隙率、密度、硬度的预测.92.1.3 神经网络在预测复合材料机械性能方面的应用.112.1.4 神经网络在预测复合材料热强度方面的应用.112.2 神经网络在工艺设计与优化方面的应用.122.
2、2.1 复合材料棒材半固态挤压工艺参数的神经网络预测方法.122.2.2 基于神经网络对复合粉末可压缩性的分析.142.3 神经网络在损伤预测与检测方面的应用.142.3.1 基于 BP 神经网络的复合材料失效分析.142.3.2 复合材料机械加工的神经网络分析.172.4 精加工复合材料表面粗糙度的神经网络模型.182.5 基于神经网络复合材料加工性能的分析.19第 3 章 MATLAB 神经网络 .213.1 BP 网络函数逼近.213.2 径向基网络函数逼近.25参考文献 .31名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 32 页 -人工神经网络原理及其在机械工程中的应
3、用2 引言长期以来,对材料研究采用的是依赖大量试验、进行大面积筛选的方法.这需要消耗大量人力、物质资源和时间.由于大量尚未理论化的经验和试验规律的存在,在相当长一段时间内还不可以完全脱离经验和探索性试验来进行研究.于是,人们将目光转向理论辅助的材料研究.将先进的计算机技术应用于现代材料研究中,通过较少的试验获得较为理想的材料,达到事半功倍的效果.材料设计的自由度大,影响因素多,利用传统的数学建模的方法来研究结构、工艺与性能之间的关系,尚存在许多困难,而简化求解问题的数学和力学模型,往往是模型本身存在较大的局限性,难以满足工程技术的需要.人工神经网络技术的发展,为材料的研究提供了新的有效途径.近
4、年来,人工神经网络技术已经引起了各个领域科技工作者的兴趣,并且在许多领域获得了成功的应用.其建模的高效性、准确性和从已知实验数据中获得知识所具有的优势,引起了材料研究工作者的高度重视.许多学者已将神经网络技术应用于材料研究领域的许多方面,例如对材料性能的研究与预测,复合材料工艺参数优化和预报,对金属在特定情况下的腐蚀性能的研究等,比起传统计算精确度大为提高。第 1 章 人工神经网络人工神经网络(ArtificialNeuralNetworks,简写为 ANNs)也简称为神经网络(NNs)或称作连接模型(ConnectionistModel),它是一种模范动物神经网络行为特征,进行分布式并行信息
5、处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。1.1 人工神经元模型图 1.1 表示出了作为 NN的基本单元的神经元模型,它有三个基本要素:一组连接(对应于生物神经元的突触)连接强度由各连接上的权值表示,名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 32 页 -人工神经网络原理及其在机械工程中的应用3 权值为正表示激活,为
6、负表示抑制。一个求和单元用于求取各输入信号的加权和(线性组合)。一个非线性激活函数起非线性映射作用并将神经元输出幅度限制在一定范围内(一般限制在(0,1)或(-1,+1)之间)。图 1.1 基本神经元模型1.2 网络结构及工作方式除单元特性外,网络的拓补结构也是NN 的一个重要特性。从连接方式上看NN 主要有两种。前馈型网络各神经元接收前一层的输入,并输出给下一层,没有反馈。节点分为两类,即输入单元和计算单元,每一计算单元可有任意个输入,但只有一个输出(它可耦合到任意多个其它节点作为其输出)。通常前馈网络可分为不同的层,第 i 层的输入只与第i-1 层输出相连,输入和输出节点与外界相连,而其他
7、中间层则称为隐层。反馈型网络所有节点都是计算单元,同时也可接受输入,并向外界输出,可画成一个无向图,其中每个连接弧都是双向的,也可画成图1.2(b)的形式。若总单元数为 n。则每一个节点有n-1 个输入和一个输出。(a)(b)图 1.2 单层全连接反馈网络名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 32 页 -人工神经网络原理及其在机械工程中的应用4 NN的工作过程主要分为两个阶段:第一个阶段是学习期,此时各计算神经元状态不变,各连线上的权值可通过学习来修改;第二阶段是工作期,此时个连接权值固定,计算单元状态变化,以达到某种稳定状态。从作用效果上看,前馈网络主要是函数映射,可
8、用于模式识别和函数逼近。反馈网络按对能量函数的极小点的利用分类有两种:第一类是能量函数的所有极小点都起作用,这一类主要做各种联想存储器;第二类只利用全局极小点,它主要用于求解最优化问题。1.3 神经网络的学习1.3.1 学习方式通过向环境学习而获取知识并改进自身性能是NN 的一个重要特点。一般情况下,性能的改善是按某种预订的度量通过调节自身参数(如权值)逐步达到的,学习方式(按环境所提供信息的多少分)有三种。监督学习(有教师学习)这种学习方式需要外界存在一个“教师”,他可对一组给定的输入提供应有的输出结果(正确答案)。这组已知的输入-输出数据称为训练样本集。学习系统(NN)可根据已知输出与实际
9、输出之间的差值(误差信号)来调节系统参数。图 1.3 有教师学习非监督学习(无教师学习)非监督学习不存在外部教师,学习系统完全按照环境所提供数据的某些统计规律来调节自身参数或结构(这是一种自组织过程),以表示外部输入的某种固有特征(如聚类,或某种统计上的分布特征)。图 1.4 无教师学习名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 32 页 -人工神经网络原理及其在机械工程中的应用5 再励学习(或强化学习)这个学习介于上述两种情况之间,外部环境对系统输出结果只给出评价(或奖惩)而不是给出正确答案,学习系统通过强化那些受奖励的动作来改善自身性能。图 1.5 强化学习1.3.2 学
10、习算法误差纠正学习令)(nyk为输入)(nx时神经元k在n时刻的实际输出,)(ndk表示相应的应有输出(可由训练样本给出),则误差信号可写为:误差纠正学习的最终目的是使某一基于)(nek的目标函数达到最小,以使网络中每一输出单元的实际输出在某种统计意义上最逼近于应有输出。Hebb 学习神经心理学家 Hebb提出的学习规则可归结为“当某一突触(连接)两端的神经元的激活同步(同为激活或同为抑制)时,该连接的强度应增强,反之则应减弱”。竞争学习在竞争学习时网络各输出单元互相竞争,最后达到只有一个最强者激活。最常见的一种情况是输出单元之间有侧向抑制性连接,这样众多输出单元中如有某一单元较强,则它将获胜
11、并抑制其他单元,最后只有比较强者处于激活状态。()()()()()kkkkkynendnyndn误差信号:名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 32 页 -人工神经网络原理及其在机械工程中的应用6 第 2 章 人工神经网络在金属基复合材料及其制备中的应用人工神经网络(Artificial Neural Networks,ANN)以其独特的自组织、自学习、快速处理、高度容错、联想记忆和可以逼近任意复杂的非线性系统等优点,近年来在诸多领域中得到了应用。目前,ANN 在材料工程中的应用主要涉及过程建模与智能控制、材料性能及缺陷预测、材料设计专家系统等方面。在材料生产与成形过程
12、中,涉及到化学成分配制、工艺参数选取、成形过程监控及过程参数协调等诸多因素,忽略任一因素都可能使成形过程中断或造成废品。人工神经网络的突出特点是能够进行自适应学习,在不需任何假设的前提下,建立反映实际情况的映射模型,但其知识的处理采用“黑箱”结构,其网络中的映射规则无法解读和理解;另一方面,神经网络模型在实现连续型的非线性映射方面还存在精度不高的问题,针对实际问题设计易学习、易训练的网络尚无固定规则可循,故使其应用受到了一定程度的限制。2.1 神经网络在复合材料性能预测方面的应用由于组份、结构的可设计性和制备工艺、加工方法的差异,使得复合材料的性能数据呈现出极大的分散性,其性能是多种因素互相影
13、响和作用的结果,而材料性能与影响因素之间通常是典型的非线性关系,难于用数学模型予以描述;如前所述,神经网络擅长处理复杂的多元非线性问题,不需预先指定函数形式,便能通过学习对强非线性数据进行拟合、建模和预报,所以,近年来,材料研究工作者开始借助神经网络技术,来建立材料性能与影响因素之间的关系模型。复合材料结构设计的一个重要步骤是在设计阶段运用数值模拟手段对结构进行静动态分析计算,有限元法是解决此问题最有力的数值工具,但有限元计算一般需要材料特性作为输入数据,最安全的方法是在与实际结构相同的测试样本上测得所需材料特性,显然此方法受多种条件限制,具有极大的局限性。2.1.1 神经网络在预测复合材料摩
14、擦性能方面的应用K.Genel等人建立了短纤维增强锌铝基复合材料摩擦行为的人工神经网络模型并获得了较高的预测精度。复合材料以ZA27合金为基体,氧化铝纤维为增强相,采用压铸法制备。其中氧化铝纤维平均长度为200m,在复合材料中的体积分数分别为10、15、20、25 和 30%。在正向压力分别为5、10、20、40N,滑动速度为 1m/s 的试验参数下进行摩擦实验。进行试验的复合材料的纤维取向名师资料总结-精品资料欢迎下载-名师精心整理-第 6 页,共 32 页 -人工神经网络原理及其在机械工程中的应用7 分垂直于摩擦表面和平行于摩擦表面两种。通过实验获得样本集。图 1 纤维方向平行于摩擦表面图
15、 2 纤维方向垂直于摩擦表面实验结果显示,材料的摩擦性能受材料的纤维体积分数、外加载荷、纤维取向影响较大。为了研究它们间的关系,神经网络以纤维体积分数、外加载荷、纤维取向为输入神经元,分别以磨损率、摩擦系数为输出神经元,采用三层神经网络结构。网络结构如下图所示:图 3 神经网络结构图每个输入层神经元接收外界传入的信号Xi,并传给隐藏层。每个隐藏层单元对输入层传入的信号进行加权求和并经激活函数传出,即:)(1iiijactjXWfY隐藏层的输出信号jY传入每一个输出层单元。输出层单元对jY进行加权求和并经激活函数输出,即)(1ijjkactkyWfO激活函数为:xactef11名师资料总结-精品
16、资料欢迎下载-名师精心整理-第 7 页,共 32 页 -人工神经网络原理及其在机械工程中的应用8 该神经网络采用 BP算法,BP算法是一种迭代梯度下降法,即使平方误差和最小,平方误差和公式如下:pippodE12)(21输入、输出变量的值需要被限定在输出神经元所用的sigmoid 函数允许的范围内。通常使用 sigmoid 函数的相对线性部分,即0.1 到 0.9 之间。数据按如下公式进行归一化处理:1.08.0minmaxminHHHHH纤维取向垂直时取0.1,平行时取 0.9.为了方便对不同参数(学习率、动量系数、隐藏层神经元个数)的神经网络的预测能力作比较,需要对预测误差进行评估。采用平
17、均相对误差,公式如下:niiiidodnMRE11001id代表实验值,io代表预测输出,n代表数据的个数。通过比较隐藏层神经元个数分别为3-12,学习率、动量系数为 0.1-0.9的网络的性能(预测误差、误差收敛速度),最终确定隐藏层神经元个数为7 个,学习率、动量系数分别为0.7 和 0.8。上图显示了关于训练样本的神经网络输出值与实验输出值的比较。从图中可以看出,二者的拟合度较好。然而,神经网络的主要性能指标是它的泛化能力,即精确地预测未知的测试数据的能力。通过测试得到神经网对磨损率、摩擦系数的预测的平均相对误差分别为5.8%和 0.6%,即预测精度达到了要求。名师资料总结-精品资料欢迎
18、下载-名师精心整理-第 8 页,共 32 页 -人工神经网络原理及其在机械工程中的应用9 上图显示了磨损率、摩擦系数在不同的压力下随纤维体积分数的变化。从图中可以看出,预测值与实验值具有相同的趋势。通过上述分析可知,采用神经网络可以对摩擦特性进行预测,因此可以大大缩减实验的工作量。2.1.2 复合材料孔隙率、密度、硬度的预测采用神经网络预测铝铜基复合材料的密度、孔隙率、硬度,首先得获得一定的实验数据作为训练样本和测试样本。1)原材料准备该实验所用材料为铝铜作为基体,碳化硅作为增强相的复合材料。其中,基体材料有五种(即铜质量分数为0,1,2,3,4,and 5 wt.%)。每种基体分别添加增强相
19、体积分数为5,10vol.%,构成复合材料。另外在基体材料中加入4wt.%的镁以增加润湿性。2)复合材料制备采用搅拌铸造法制备复合材料,将集体合金熔化,加入碳化硅并搅拌在半固态下浇注模具,获得实验坯料。3)实验数据采集分别测得各实验材料的密度、孔隙率、硬度。输入数据需进行标准化,标准化方程如下:标准值=(输入值-最小值)/(最大值-最小值)该网络模型采用 BP 算法,激励函数采用Sigmoid 函数,函数公式如下xexfy11BP 算法是有导师学习算法,学习系统根据已知输出与实际输出之间的差值来调整系统参数。训练完成之后。采用标准均方误差值(NSE)评价训练效果,名师资料总结-精品资料欢迎下载
20、-名师精心整理-第 9 页,共 32 页 -人工神经网络原理及其在机械工程中的应用10 公式如下:220)(NSE其中为实验输出值,0为预测输出值。该网络结构由三层组成,第一层(输入层)由两个神经元组成,分别为Cu(wt.%)和 SiC(vol%);第二层(隐藏层)由十个神经元组成;第三层(输出层)由三个神经元组成,分别为硬度、密度、孔隙率。样本集被分为两组,一组为训练样本,一组为测试样本。使用训练样本调整权值,当误差达到目标值时停止训练。再使用测试样本评估神经网络的性能。为了测试训练后的神经网络的泛化能力,将实验值与与测试值作比较,比较结果如下:图 a 图 b 图 a显示了训练样本集中实验值
21、与预测值的比较,从图中可以看出两者拟合较好。神经网络的一个重要指标是它的泛化能力,即预测未知数据的输出的能力,图 b 显示了该网络模型具有较好的泛化能力。名师资料总结-精品资料欢迎下载-名师精心整理-第 10 页,共 32 页 -人工神经网络原理及其在机械工程中的应用11 该图表示硬度作为Cu 和 SiC 的函数的图像,其中直柱表示了实验值,实线表示预测值。从图中可以看出,该神经网络的预测值与实验值具有很好的一致性,可以很好的预测复合材料的硬度。同样,神经网络对密度和孔隙率的预测也有很高的精度。因此,采用神经网络进行预测,可以缩减测试时间和费用,并对进一步的实验有很好的指导意义。2.1.3 神
22、经网络在预测复合材料机械性能方面的应用Rasit Koker等人采用各种算法对预测AlSiMg基复合材料弯曲强度和硬度的神经网络模型进行训练,并对比各算法对训练结果的影响。Al2O3/SiC 颗粒增强金属基复合材料采用搅拌铸造法制备。测试加工成的复合材料的微观结构、弯曲强度和硬度。采用由四种不同算法训练的BP神经网络对复合材料弯曲强度和硬度进行预测。结果显示弯曲强度和硬度随着延展性和增强相尺寸的减小而增高。比较各算法训练出的网络的预测精度,发现LevenbergMarquardt 算法的预测精度最高。结果表明采用神经网络预测弯曲强度和硬度,具有很高的精度,因此可以省去费时费力的实验测量。2.1
23、.4 神经网络在预测复合材料热强度方面的应用由于增强相含量和成型条件(如温度和应变速率)之间的关系是复杂的非线性,因此现有的模型,尤其是基于能量的模型不适于预测热变形行为。为了实现这个目的 Issam S.Jalham 采用径向基函数网络、多层感知器网络和 neuro-fuzzy网络去预测材料的非线性的应力应变关系。结果表明 neuro-fuzzy网络是预测增强相为 Al2O3,平局颗粒尺寸为 25m的铝基复合材料的热成型行为的最好网络。结果表明铝基复合材料的流变应力在任何应变速率和温度下,随着 Al2O3 增强相含量的增加、应变速率的增加和温度的减小而增加。应变软化和屈服的趋势随增强相体积分
24、数增加而减小。名师资料总结-精品资料欢迎下载-名师精心整理-第 11 页,共 32 页 -人工神经网络原理及其在机械工程中的应用12 2.2 神经网络在工艺设计与优化方面的应用复合材料的结构设计、制备或加工工艺的优化,强烈地依赖于它们与材料性能或其它所关注目标之间的关系模型,例如,利用 BP 神经网络建立材料性能与工艺条件之间的关系模型后,就可以利用该模型来完成工艺条件的优化工作,这不仅有利于减小实验的盲目性,降低实验成本和材料开发周期,也能够深化理解各工艺条件对材料性能的本质作用机理。2.2.1 复合材料棒材半固态挤压工艺参数的神经网络预测方法基于神经网络的预测方法的基本思路是,利用人工神经
25、网络强大的学习功能,通过反复训练样本数据来确定预测系统的结构和参数,建立系统模型.人工神经网络工艺参数预测系统结构见下图:建立样本集在 315MN 液压机上进行 Al2O3/LY12 复合材料棒材成形试验,采集多组试验数据作为样本集。复合材料的成形质量主要取决于各工艺参数之间的协调匹配。影响成形质量的因素较多,根据前期研究结果,确定起主要作用的可控工艺参数作为建模变量,有模具温度、浇注温度、纤维预制体预热温度、浸渗时间、浸渗压力、变形速度和挤压力等,由于预制体的预热随金属加热同时进行,故可简化为 6 个变量。输入输出对成形质量其主要作用的工艺参数为:模具温度 T1、浇注温度 T2、浸渗时间 t
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年神经网络在金属基复合材料及其制备中的应用 2022 神经网络 金属 复合材料 及其 制备 中的 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内