中考数学压轴题精选及答案(整理版).doc
《中考数学压轴题精选及答案(整理版).doc》由会员分享,可在线阅读,更多相关《中考数学压轴题精选及答案(整理版).doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2015年全国各地中考数学压轴题精选1、(黄石市2015年)(本小题满分9分)已知及相交于、两点,点在上,为上一点(不及,重合),直线及交于另一点。(1)如图(8),若是的直径,求证:;(2)如图(9),若是外一点,求证:;(3)如图(10),若是内一点,判断(2)中的结论是否成立。2、(黄石市2015年)(本小题满分10分)已知二次函数(1)当时,函数值随的增大而减小,求的取值范围。(2)以抛物线的顶点为一个顶点作该抛物线的内接正三角形(,两点在抛物线上),请问:的面积是及无关的定值吗?若是,请求出这个定值;若不是,请说明理由。(3)若抛物线及轴交点的横坐标均为整数,求整数的值。3、(201
2、5年广东茂名市)如图,P及轴相切于坐标原点O(0,0),及轴相交于点A(5,0),过点A的直线AB及轴的正半轴交于点B,及P交于点C(1)已知AC=3,求点的坐标; (分) 第3题图(2)若AC=, D是O的中点问:点O、P、C、D四点是否在同一圆上?请说明理由如果这四点在同一圆上,记这个圆的圆心为,函数的图象经过点,求的值(用含的代数式表示) 4、庆市潼南县2015年)如图,在平面直角坐标系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,抛物线经过A,B两点,抛物线的顶点为D(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的
3、垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:求以点、为顶点的四边形的面积;在抛物线上是否存在一点P,使EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.5、苏省宿迁市2015年)(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y(x0)图象上的任意一点,以P为圆心,PO为半径的圆及x、y轴分别交于点A、B(1)判断P是否在线段AB上,并说明理由;(2)求AOB的面积;(3)Q是反比例函数y(x0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆及x、y轴分别交于点M、N,连接AN、MB求证:AN
4、MB6、苏省宿迁市2015年)(本题满分12分)如图,在RtABC中,B90,AB1,BC,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E(1)求AE的长度;(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F及C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想EAG的大小,并说明理由7、(11年广东省)10如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取ABC和DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取A1B1C1和D1E1F1各边中点,连接成
5、正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去,则正六角星形A4F4B4D4C4E4的面积为_ 8、1年广东省)21如图(1),ABC及EFD为等腰直角三角形,AC及DE重合,AB=AC=EF=9,BAC=DEF=90,固定ABC,将DEF绕点A顺时针旋转,当DF边及AB边重合时,旋转中止现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)(1)问:始终及AGC相似的三角形有 及 ;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x为何值时,AGH是等腰三角形.
6、9、11年凉山州)如图,抛物线及轴交于(,0)、(,0)两点,且,及轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。10、市二一一年)27(本题满分12分)情境观察将矩形ABCD纸片沿对角线AC剪开,得到ABC和ACD,如图1所示.将ACD的顶点A及点A重合,并绕点A按逆时针方向旋转,使点D、A(A)、B在同一条直线上,如图2所示观察图2可知:及BC相等的
7、线段是 ,CAC= 问题探究如图3,ABC中,AGBC于点G,以A为直角顶点,分别以AB、AC为直角边,向ABC外作等腰RtABE和等腰RtACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP及FQ之间的数量关系,并证明你的结论.拓展延伸如图4,ABC中,AGBC于点G,分别以AB、AC为一边向ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE及HF之间的数量关系,并说明理由.11、市二一一年)28(本题满分12分)如图,已知一次函数y = - x +7及正比例函数y = x的图象交于点A,且及x轴交于点B.(1)求点A
8、和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线ly轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直线l都停止运动在运动过程中,设动点P运动的时间为t秒.当t为何值时,以A、P、R为顶点的三角形的面积为8?是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由12、11济宁)如图,第一象限内半径为2的C及y轴相切于点A,作直径AD,过点D作C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:
9、y=kx+3。(1) 设点P的纵坐标为p,写出p随变化的函数关系式。(2)设C及PA交于点M,及AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有AMNABP。请你对于点P处于图中位置时的两三角形相似给予证明;(3)是否存在使AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由。13、市2015年)(本题满分10分)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点,两直角边及该抛物线交于、两点,请解答以下问题:(1)若测得(如图1),求的值;(2)对同一条抛物线,孔明将三角板绕点旋转到
10、如图2所示位置时,过作轴于点,测得,写出此时点的坐标,并求点的横坐标;(3)对该抛物线,孔明将三角板绕点旋转任意角度时惊奇地发现,交点、的连线段总经过一个固定的点,试说明理由并求出该点的坐标14、如图,P为ABC内一点,连接PA、PB、PC,在PAB、PBC和PAC中,如果存在一个三角形及ABC相似,那么就称P为ABC的自相似点如图,已知RtABC中,ACB=90,ACBA,CD是AB上的中线,过点B作BECD,垂足为E,试说明E是ABC的自相似点在ABC中,ABC如图,利用尺规作出ABC的自相似点P(写出作法并保留作图痕迹);若ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数15
11、、题 问题情境已知矩形的面积为a(a为常数,a0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型 设该矩形的长为x,周长为y,则y及x的函数关系式为探索研究 我们可以借鉴以前研究函数的经验,先探索函数的图象性质 填写下表,画出函数的图象:x1234y观察图象,写出该函数两条不同类型的性质;在求二次函数y=ax2bxc(a0)的最大(小)值时,除了通过观察图象,还可以通过配方得到请你通过配方求函数(x0)的最小值解决问题用上述方法解决“问题情境”中的问题,直接写出答案16、2015年初中毕业生学业考试(衢州卷)已知两直线,分别经过点A(1,0),点B,并且当两直线同时相交于y正半轴
12、的点C时,恰好有,经过点A、B、C的抛物线的对称轴及直线交于点K,如图所示。(1)求点C的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线,抛物线,直线和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由。(3)当直线绕点C旋转时,及抛物线的另一个交点为M,请找出使MCK为等腰三角形的点M,简述理由,并写出点M的坐标。17、(11凉山州)如图,抛物线及轴交于(,0)、(,0)两点,且,及轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存
13、在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。18、 (题满分14分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(,0),将此平行四边形绕点0顺时针旋转90,得到平行四边形。(1)若抛物线过点C,A,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形重叠部分的周长;(3)点M是第一象限内抛物线上的一动点,间:点M在何处时的面积最大?最大面积是多少?并求出此时点M的坐标。19(2015年广东省如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B
14、同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得FMN,过FMN三边的中点作PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:(1)说明FMNQWP;(2)设0x4(即M从D到A运动的时间段)。试问x为何值时,PQW为直角三角形?当x在何范围时,PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值。20、(2015年桂林市)(本题满分12分)已知二次函数的图象如图.(1)求它的对称轴及轴交点D的坐标;(2)将该抛物线沿
15、它的对称轴向上平移,设平移后的抛物线及轴,轴的交点分别为A、B、C三点,若ACB=90,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作D,试判断直线CM及D的位置关系,并说明理由.21、(达州市2015年) (10分)如图,已知抛物线及轴交于A(1,0),B(,0)两点,及轴交于点C(0,3),抛物线的顶点为P,连结AC (1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC及AC垂直,且直线DC及轴交于点Q,求点D的坐标;(3)抛物线对称轴上是否存在一点M,使得SMAP=2SACP,若存在,求出M点坐标;若不存在,请说明理由22、如图1,把一个
16、边长为2的正方形ABCD放在平面直角坐标系中,点A在坐标原点,点C在y轴的正半轴上,经过B、C、D三点的抛物线c1交x轴于点M、N(M在N的左边).(1)求抛物线c1的解析式及点M、N的坐标;(2)如图2,另一个边长为2的正方形的中心G在点M上,、在x轴的负半轴上(在的左边),点在第三象限,当点G沿着抛物线c1从点M移到点N,正方形随之移动,移动中始终及x轴平行.直接写出点C、D移动路线形成的抛物线C(C)、()的函数关系式;如图3,当正方形第一次移动到及正方形ABCD有一边在同一直线上时,求点G的坐标图3图2图1 23、(本题满分12分)如图,二次函数及x轴交于A、B两点,及y轴交于C点,点
17、P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G。(1)求直线AC的解析式;(2)设PQC的面积为S,求S关于t的函数解析式;(3)在y轴上找一点M,使MAC和MBC都是等腰三角形。直接写出所有满足条件的M点的坐标;(4)过点P作PEAC,垂足为E,当P点运动时,线段EG的长度是否发生改变,请说明理由。24、如图1,正方形ABCD的顶点A,B的坐标分别为(0,10),(8,4),顶点C,D在第一象限.点P从点A出发,沿正方形按逆时针方向运动,同时,点Q从点E(4,0)出发,沿
18、x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动.设运动时间为t(s). (1)求正方形ABCD的边长.(2)当点P在AB边上运动时,OPQ的面积S(平方单位)及时间t(s)之间的函数图像为抛物线的一部分(如图2所示),求P,Q两点的运动速度.(3)求(2)中面积S(平方单位)及时间t(s)的函数解析式及面积S取最大值时点P的坐标.(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,OPQ的大小随着时间t的增大而增大;沿着BC边运动时,OPQ的大小随着时间t的增大而减小.当点P沿着这两边运动时,能使OPQ90吗?若能,直接写出这样的点P的个数;若不能,直接写不能.
19、25. 已知,以AC为边在外作等腰,其中。(1)如图1,若,四边形ABCD是平行四边形,则_;(2)如图2,若,是等边三角形,。求BD的长;(3)如图3,若为锐角,作于H。当时,是否成立?若不成立,请说明你的理由;若成立,证明你的结论。27、26.(本题满分12分)如图,RtAOB中,A90,以O为坐标原点建立直角坐标系,使点A在x轴正半轴上,OA2,AB8,点C为AB边的中点,抛物线的顶点是原点O,且经过C点 (1)填空:直线OC的解析式为 ; 抛物线的解析式为 ; (2) 现将该抛物线沿着线段OC移动,使其顶点M始终在线段OC上(包括端点O、C),抛物线及y轴的交点为D,及AB边的交点为E
20、; 是否存在这样的点D,使四边形BDOC为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由; 设BOE的面积为S,求S的取值范围备用图27.(本题满分12分)等腰直角ABC和O如图放置,已知AB=BC=1,ABC=90,O的半径为1,圆心O及直线AB的距离为5现ABC以每秒2个单位的速度向右移动,同时ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大 当ABC的边(BC边除外)及圆第一次相切时,点B移动了多少距离? 若在ABC移动的同时,O也以每秒1个单位的速度向右移动,则ABC从开始移动,到它的边及圆最后一次相切,一共经过了多少时间? 在的条件下,是否存在某一时刻,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 压轴 精选 答案 整理
限制150内