初二平行四边形的性质和判定知识点整理.doc
《初二平行四边形的性质和判定知识点整理.doc》由会员分享,可在线阅读,更多相关《初二平行四边形的性质和判定知识点整理.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初二平行四边形的性质和判定专题1平行四边形的定义(1)定义:两组对边分别平行的四边形叫做平行四边形平行四边形的定义有两层意思:是四边形;两组对边分别平行这两个条件缺一不可(2)表示方法:平行四边形用符号“”表示平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”(3)平行四边形的基本元素:边、角、对角线平行四边形的定义的作用:平行四边形的定义既是性质,又是判定方法由定义可知平行四边形的两组对边分别平行;由定义可知只要四边形中有两组对边分别平行,那么这个四边形就是平行四边形【例1】对于平行四边形ABCD,AC及BD相交于点O,下列说法正确的是()A平行四边形ABCD表示为“ACDB”B
2、平行四边形ABCD表示为“ABCD”CADBC,ABCDD对角线为AC,BO解析:两组对边分别平行的四边形是平行四边形,可知平行四边形的两组对边平行,故选C.答案:C2平行四边形的性质(1)平行四边形的对边平行且相等例如:如图所示,在ABCD中,ABCD,ADBC.由上述性质可得,夹在两条平行线间的平行线段相等如图2,直线l1l2.AB,CD是夹在直线l1,l2间的平行线段,则四边形ABCD是平行四边形,故ABCD.(2)平行四边形的对角相等,邻角互补例如:如图所示,在ABCD中,ABCCDA,BADBCD.ABCBAD180,ABCBCD180,BCDCDA180,BADCDA180.(3)
3、平行四边形的对角线互相平分例如:如图所示,在ABCD中,OAOC,OBOD.图(4)经过平行四边形对角线的交点的直线被对边截得的两条线段相等,并且该直线平分平行四边形的面积例如:如图所示,在ABCD中,EF经过对角线的交点O,及AD和BC分别交于点E,F,则OEOF,且S四边形ABFES四边形EFCD.【例2】ABCD的周长为30 cm,它的对角线AC和BD交于O,且AOB的周长比BOC的周长大5 cm,求AB,AD的长分析:依题意画出图形,如图,AOB的周长比BOC的周长大5 cm,即AOABBO(BOOCBC)5(cm)因为OAOC,OB为公共边,所以ABBC5(cm)由ABBC15(cm
4、)可求AB,BC,再由平行四边形的对边相等得AD的长解:AOB的周长比BOC的周长大5 cm,AOABBO(BOOCBC)5(cm)四边形ABCD是平行四边形,AOOC,ABBC5(cm)ABCD的周长为30 cm,ABBC15(cm)得AB10 cm,ADBC5 cm.3平行四边形的判定(1)方法一:(定义判定法)两组对边分别平行的四边形叫做平行四边形平行四边形的定义是判定平行四边形的根本方法,也是其他判定方法的基础关于边、角、对角线方面还有以下判定定理(2)方法二:两组对边分别相等的四边形是平行四边形如图,连接BD,由ADBC,ABCD,可证明ABDCDB,所以CDBABD,CBDADB,
5、从而得到ABCD,ADBC.由定义得到四边形ABCD为平行四边形其推理形式为:ABDC,ADBC,四边形ABCD是平行四边形(3)方法三:两组对角分别相等的四边形是平行四边形如图,由A=C,B=D,A+B+C+D=360,可得B+C=180,A+B=180.从而得到ABDC,ADBC.由定义得到四边形ABCD为平行四边形,其推理形式为:A=C,B=D,四边形ABCD是平行四边形(4)方法四:对角线互相平分的四边形是平行四边形其推理形式为:如图,OA=OC,OB=OD,四边形ABCD是平行四边形(5)方法五:一组对边平行且相等的四边形是平行四边形其推理形式为:如图,ADBC,ADBC,四边形AB
6、CD是平行四边形(1)判定方法可作为“画平行四边形”的依据;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形【例3】已知,如图,在四边形ABCD中,AC及BD相交于点O,ABCD,AOCO.四边形ABCD是平行四边形,请说明理由解:因为ABCD,所以BACDCA.又因为AOCO,AOBCOD,所以ABOCDO.所以BODO.所以四边形ABCD是平行四边形4三角形的中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线(2)性质:三角形两边中点连线平行于第三边,并且等于第三边的一半(1)一个三角形有三条中位线,每条中位线及第三边都有相应的位置关系和数量关系;(2)三角形的中位线
7、不同于三角形的中线,三角形的中位线是连接两边中点的线段,而三角形的中线是连接三角形一边的中点和这边所对顶点的线段【例4】如图所示,在ABC中,点D,E,F分别是AB,BC,CA的中点,若ABC的周长为10 cm,则DEF的周长是_cm.解析:由三角形的中位线性质得,DFBC,EFAB,DEAC,所以DEF的周长105(cm)答案:55两条平行线间的距离定义:两条平行线中,一条直线上任意一点到另一直线的距离,叫做这两条平行线间的距离如图所示,ab,点A在直线a上,过A点作ACb,垂足为C,则线段AC的长是点A到直线b的距离,也是两条平行线a,b之间的距离(1)如图,过直线a上点B作BDb,垂足为
8、D,则线段BD的长也是两条平行线a,b之间的距离于是由平行四边形的性质可知平行线的又一个性质:平行线间的距离处处相等(2)两条平行线之间的距离是指垂线段的长度,当两条平行线的位置确定时,它们之间的距离也随之确定,它不随垂线段的位置的改变而改变,是一个定值【例5】如图所示,如果l1l2,那么ABC的面积及DBC的面积相等吗?由此你还能得出哪些结论?解:ABC的面积及DBC的面积相等因为l1l2,所以它们之间的距离是一个定值所以ABC及DBC是同底等高的两个三角形所以SABCSDBC.结论:l1上任意一点及B,C连接,构成三角形的面积都等于ABC的面积,这样的三角形有无数个6平行四边形性质的应用平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 平行四边形 性质 判定 知识点 整理
限制150内