《2022年初中数学知识点梳理——数的整除 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学知识点梳理——数的整除 .pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学知识点梳理(沪教市北综合版)1 初中数学知识点梳理(沪教市北综合版)导言初中数学知识点梳理沪教市北综合版为编者依据沪教版初中数学和市北初级中学资优生培训教材初中数学的内容综合编撰而成,既吸取了沪教版初中数学侧重基础、知识全面的特点,也吸取了市北版初中数学拓展广度、延伸深度的特点,实现了两者内容的有机融合,保证了初中数学知识点梳理的基础性、系统性、全面性、拓展性和概括性,能为初中数学的学习提供较好的知识帮助。文中带“()”部分为市北版的加深内容,练习带“()”部分也为市北版内容。第一章 数的整除一、知识结构二、重点和难点重点:会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。
2、难点:求两个正整数的最小公倍数。第一节 整数和整除名师资料总结-精品资料欢迎下载-名师精心整理-第 1 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)2 1.1整数和整除的意义 正整数:用来表示物体个数的数1,2,3,4,5叫做正整数。负整数:在正整数 1,2,3,4,5之前添上“-”,得到的数-1,-2,-3,-4,-5叫做负整数。零既不是正整数,也不是负整数。自然数:零和正整数统称为自然数。整数:正整数、零、负整数统称为整数。正整数自然数整数零负整数 整除:设 a、b 是两个整数,且 ba,若存在整数 q,使 abq,则称 b 整除 a,或 a 被 b 整除,记作 ba。()或者
3、说,如果整数a 除以整数 b(b 0)所得的商是整数,那么叫做a 被 b 整除,或 b 能整除 a。整数 a 除以整数 b 整数 a 被整数 b 整除 a b 整数 b 整除整数 a 例 1:下列哪一个算式的被除数能被除数整除?287 103 54 解:因为 2874,10331,541.25,所以被除数能被除数整除的是287。注意整除的条件:除数、被除数都是整数;被除数除以除数,商是整数而且余数为零。整除的主要性质:()cb、ba,则 ca;若 m a、m b,则 m(ab);名师资料总结-精品资料欢迎下载-名师精心整理-第 2 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)3 若
4、 m a、m b,则 m(ab);若 m a,则 m ab(b 为自然数);n 个连续正整数的积能被n!整除。(n 的阶乘:n!123 n)()例如:a 为整数时,2a(a+1)6a(a+1)(a+2)24a(a+1)(a+2)(a+3)()解:由于 4 个连续的整数中必有 1 个数为 4 的倍数,还有另一个数为2 的倍数,有 1 个是 3 的倍数,因为 a、a+1、a+2、a+3 为 4 个连续的整数,所以,a、a+1、a+2、a+3 中必有一个数为 4 的倍数,另有一个数为2 的倍数,有一个数为 3 的倍数,即为 234=24的倍数。整除与除尽的区别:整除:它只在整数氛围内讨论,被除数、除
5、数、商都是整数,余数为零;除尽:未限制数域范围,只是除完后没有余数。练习 是否有最小的自然数?是否有最大的整数?把下列各数分别填入相应的括号中。22 60,12,3.14,0,1,1,0.618,7 正整数(),负整数(),自然数(),整数()。下列各式中,哪些式子表示整除?名师资料总结-精品资料欢迎下载-名师精心整理-第 3 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)4 1243 ()200.540 ()3575 ()45451 ()4.21.4 3 ()787.810 ()2.6 1.32,能不能说 2.6 能被 1.3 整除?如果 a 表示一个自然数,且a2,写出:紧挨着它
6、,在它后面的两个连续自然数_;紧挨着它,在它前面的两个连续自然数_。下列算式中,哪些是除尽?哪些是整除?4276 ()350.6 ()40.2 20 ()5312 ()8.132.7 ()230.66666()名师资料总结-精品资料欢迎下载-名师精心整理-第 4 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)5 1.2 因数和倍数 倍数和因素:如果数a 能被数 b(b 0)整除,a 就叫做 b 的倍数(mutiple),b 就叫做 a 的因数(factor)(或 a 的约数)。倍数和因数是相互依存的。因素的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。倍数
7、的特征:一个数的倍数的个数是无限的,其中最小的倍数是它本身。个数 最小 最大因数 有限 1 它本身倍数 无限 它本身 没有 一个数的因素的求法:列乘法算式或直接用口诀找,即这个数是哪两个数的乘积,注意要找出所有的可能性;列除法算式找,即这个数所有能整除的整数。例:求 18 的因素。乘积是 18 的算式有:118=18,29=18,36=18,所以,18 的因素有 1,2,3,6,9,18。名师资料总结-精品资料欢迎下载-名师精心整理-第 5 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)6 18 能整除的算式有:181=18,182=9,183=6,所以,18 的因素有 1,2,3,
8、6,9,18。一个数的倍数的求法:这个数和任何非零自然数之积都是该数的倍数,所以,求一个数的倍数的方法可以列乘法算式找。任何正整数都是 1 的倍数。练习填空:455=9,()能被()整除,()能整除();()是()的因数,()是()的倍数。一个正整数 a 的因数的个数是(),其中最小的一个是(),最大的一个是();正整数 a 的倍数的个数是(),其中最小的一个是()。一个数的最小倍数是9,那么这个数的最大因数是(),最小因数是()。有一个数,它既是6 的倍数,又是 6 的因数,这个数是()。1.3 数的整除性常见数的倍数特征:2 的倍数特征:个位是偶数,即个位上是0、2、4、6、8 的数,都能
9、被 2 整除。3 的倍数特征:一个数的各个数位上的数字之和能被3 整除,这个数就能被3整除。5 的倍数特征:个位上是0 或 5 的数,都能被 5 整除。9 的倍数特征:一个数的各个数位上的数字之和能被9 整除,这个数就能被9整除。11 的倍数特征:一个数的奇位上的数字之和与偶位上的数字之和的差相等或是11 的倍数,这个数就能被11整除。7、11、13 的倍数特征:一个数的末三位数与末三位以前的数字所组成的数之差是 7、11、13 的倍数,这个数就能被7、11、13 整除。4 或 25 的倍数特征:一个数的末两位数能被4(或 25)整除,这个数就能被4(或 25)整除。名师资料总结-精品资料欢迎
10、下载-名师精心整理-第 6 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)7 8 或 125 的倍数特征:一个数的末三位数能被8(或 125)整除,这个数就能被8(或 125)整除。例如:1168、4600、5000、12344都能被 8 整除,1125、13375、5000都能被 125整除。能同时被 2,5 整除的数的特征:个位是 0。能同时被 2,3,5 整除的数的特征:个位是 0,而且各个位上的数字的和能被3整除。能被 3 整除的数不一定能被9 整除,但是能被9 整除的数一定能被3 整除。例 1:一年级 72 名学生课间加餐共交 52.7元,处的数字辨认不清,问每个学生交了多
11、少钱?()解:由于 7289,因此,527要都能被 8、9 整除,527被 8 整除,即 27被 8 整除,从而得出个位数字是2。527被 9 整除,即:5272 79 被 9 整除,从而可得首位是2。所以每人交了:252.72723.51(元)。答:每人交了 3.51 元。例 2:要使六位数 15ABC6 能被 36 整除,而且所得的商最小,求A、B、C。()解:因为 3649,所以 C只可能是 1,3,5,7,9。要使商最小,首先A应尽可能小,于是取 A0,又156ABC93BC 能被 9 整除,即 BC 3 是 9 的倍数,C只能是 1,3,5,7,9,而 B应尽可能小,因此 B取 1,
12、C取 5。答:A、B、C分别是 0、1、5。练习 1.1()1、有 15 位同学参加学校组织的夏令营活动,老师准备把他们平均分成若干小组,有几种分法?有可能把他们平均分成4 个小组吗?为什么?名师资料总结-精品资料欢迎下载-名师精心整理-第 7 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)8 2、一班同学分成四个小组糊纸盒,每组糊的个数同样多,小马虎统计时说:全班共糊纸盒 342 个。小马虎统计错了吗?为什么?3、不超过 100 的正整数中,能被25 整除的数有哪些?不错过1000 的正整数中,能被 125 整除的数有哪些?1.4 奇数与偶数()奇数与偶数:能被 2 整除的数叫做偶
13、数(even number);不能被 2 整除的数叫做奇数(odd number)。0 是偶数。自然数按能否被 2 整除的特征可分为奇数和偶数。设 n 是整数,则:2n 是偶数,2n-1 或 2n+1 是奇数;设 n 是正整数,则:2n 是正偶数,2n-1 是正奇数。奇数偶数的运算性质:名师资料总结-精品资料欢迎下载-名师精心整理-第 8 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)9 奇数奇数偶数,奇数偶数奇数,偶数偶数偶数;奇数奇数奇数,奇数偶数偶数,偶数偶数偶数。奇数的正整数次幂是奇数,偶数的正整数次幂是偶数。两个连续整数的和是奇数,积是偶数。推广结论:奇数个奇数之和是奇数,
14、偶数个奇数之和是偶数,任意有限个偶数之和是偶数。若干个奇数的乘积是奇数,偶数与整数的乘积是偶数。如果若干个整数的乘积是奇数,那么其中每一个整数都是奇数;如果若干个整数的乘积是偶数,那么其中至少有一个整数是偶数。如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数一定是一奇一偶。两个整数的和与差的奇偶性相同。例 1:在 1,2,2008 中每个数前面任意添加“”、“”号,最终的运算结果是奇数还是偶数?请说明理由。()解:因为 ab 与 ab 的奇偶性相同,所以将算式中每一个数前的“”号逐一改成“”号,其结果的奇偶性不变,故所求的结果与1220
15、0810042009的奇偶性相同,因此,所求算式的结果为偶数。例 2:将 1,2,99重新排列成 a1,a2,a99,求证:乘积(a11)(a21)(a991)一定是偶数。()解:1,2,99 中有 50 个奇数,49 个偶数,a1,a2,a99中也有 50 个奇数,49 个偶数,所以 a1,a3,a5,a99这 50 个数中必有一个是奇数,设其中ak是奇数,则:akk 是两个奇数之差,因而是偶数,名师资料总结-精品资料欢迎下载-名师精心整理-第 9 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)10 所以(a11)(a21)(a991)一定是偶数。练习 1.2()1、5 个连续偶数
16、的和是320,这五个连续偶数分别是几?2、用 15、16、17、18、19 这五个数两两相乘,可以得到10 个不同的乘积,问乘积中有多少个偶数?3、一次舞会有七名男士和七名女士参加,一名男士和一名女士在一起跳为跳一次舞,会后统计出有 8人各跳了 6次,有 5人各跳了 3次,问余下的一人至少跳了几次?4、13 个不同的自然数之和等于100,其中偶数最多有几个?偶数最少有几个?第二节 分解素因数1.5 素数、合数与分解素因数 素数:一个数,如果只有 1 和它本身两个因数,这样的数叫做素数(prime number)(或质数)。名师资料总结-精品资料欢迎下载-名师精心整理-第 10 页,共 23 页
17、 -初中数学知识点梳理(沪教市北综合版)11 100 以内的质数表:100 以内共有 26个质数,具体为:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。熟记 20 以内的全部素数。合数:一个数,如果除了1 和它本身还有别的因数,这样的数叫做合数(composite number)。重点注意:1 既不是质数也不是合数;2 是最小的质数,也是唯一的偶质数;4 是最小的合数;正整数可以分成质数、合数和1。因此,一个数是质数就一定不是合数,是合数就一定不是质数。素因数:每个合数都可以写成几个素数相乘的形式,
18、其中每个素数都是这个合数的因数,叫做这个合数的素因数(也叫质因数)。例如 15=35,3 和 5 叫做15 的素因数。例 1:判断 3333334111111是素数还是合数?()解:3333334111111 3333333000000 1111111 111111130000001111111 1111111(30000001)11111113000001 所以,3333334111111是合数。例 2:桌子上有一堆石子共1001粒,第一步从中扔去一粒石子,并将余下的石子分成两堆。以后的每一步,都从某个石子数目多于1 的堆中扔去一粒,再把这堆分成两堆,试问:能否在若干步以后,使桌上的每一堆中
19、都刚好有3 粒石子?()小明:我家的门牌号是最小的质数和最小的合数分别连续写两次。小丽:我家的门牌号是10 以内的奇数从大到小排列。你知道小明家和小丽家的门牌号分别是多少吗?解:假设结果可能,并设最后剩下n 堆,每堆 3 粒,则在此之前一共进行了(n1)次操作,而每次操作都扔去一粒,所以一共扔去(n1)粒,因此 3n(n1)1001,即 4n1002 名师资料总结-精品资料欢迎下载-名师精心整理-第 11 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)12 因为 4n 是 4 的倍数,而 1002 不是 4 的倍数,这样就产生了矛盾,所以,假设不成立。所以,不可能在若干步以后,使桌上
20、的每一堆中都刚好有3 粒石子。分解素因数:把一个合数分解成若干个素因数相乘的形式,即求素因数的过程叫做分解素因数。把一个合数分解素因数,通常可用“短除法”或“树枝分解法”。用短除法分解素因数的步骤:先用一个能整除这个合数的素数(通常从最小的开始)去除;得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止;然后把各个除数和最后的商按从小到大的顺序写成连乘的形式。例 3:把 60 分解质因数:2 6 0 2 3 0 3 1 5 5 60=2235。树枝分解法:例 4:把 60 分解质因数:60 2 30 2 15 3 5 60=2235。一个数的因素个数的计算诀窍:用分解素因数的
21、方法将这个数分解成素因数的乘积,并将相同的素因数用幂次方的形式表示,则因素个数各素因数的幂次方分别加 1 后相乘,如:42000243537,则 42000的因素有(4 1)(1 1)(31)(1 1)80 个。()名师资料总结-精品资料欢迎下载-名师精心整理-第 12 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)13 素数与合数的性质:素数有无数多个。2 是唯一的偶素数。大于2 的素数必为奇数。如果两个素数的和或差是奇数,那么其中必有一个是2;如果两个素数的积是偶数,那么其中也必有一个是2。若素数 pab,则必有 pa 或 pb。()若正整数 a、b 的积是素数 p,则必有 ap
22、 或 bp。()唯一分解定理:任何整数n(n1)可以唯一地分解为:np1a1p2a2 pkak,p1p2 pk是素数;a1,a2,ak是正整数。()例 5:已知四个质数满足p1p2p3p4,且 p12p22p32p42511,试求这四个质数。()解:由于 511 是奇数,所以这四个质数不都是奇数,其中必有偶质数2,即 p12,代入得:p22p32p42507 因为 507529232,所以 p419,若 p419,则 p22p32146,可知 73p32146,p311,p25;若 p417,则 p22p32218,可知 109p32218,p311 或 13,p311 时,p2297,p2无
23、解;p313 时,p2249,p27;所以,这四个质数为2、5、11、19或 2、7、13、17。例 6:当 x 取 1 到 10 之间的质数时,四个整式:x22、x24、x26、x28 的值中,共有质数多少个?()解:1 到 10 之间的质数有 2、3、5、7,由于 2 是偶数,所以可用质数为3、5、7。当 x3 时,x2211,x2413,x2615,x2817,有 11、13、17 三个质数;当 x5 时,x2227,x2429,x2631,x2833,有 29、31 两个质数;当 x7 时,x2251,x2453,x2655,x2857,有 53 一个质数;名师资料总结-精品资料欢迎下
24、载-名师精心整理-第 13 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)14 所以,共有 6 个质数。例 7:三个质数的积等于它们的和的11 倍,求这三个质数。()解:设这三个质数分别为P、Q、R,则有:PQR 11(PQ R)可知,必有一质数为11,设 R11,则:PQ PQ 11,PQ PQ 11,P(Q 1)(Q 1)12,(P1)(Q 1)12,设 PQ,所以 P11,Q 112,或 P12,Q 16,或 P13,Q 14,得:P2,Q 13,或 P3,Q 7,或 P4,Q 5(不符合质数的条件,舍去),故所求的三个质数为2、11、13 或 3、7、11。练习 1.3(1)
25、()1、在 1 到 100 这 100 个自然数中任取其中的n 个,要使这 n 个数中至少有一个合数,则 n 至少是多少?2、有三张卡片,在它们上面各写着一个数字2、3、4,从中抽出一张、二张、三张按任意顺序排列起来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来。3、已知 P,P10,P14 都是质数,求所有这样的数P。练习 1.3(2)()1、分解素因数:45,88,126。名师资料总结-精品资料欢迎下载-名师精心整理-第 14 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)15 2、农民用几只船分三次运送315袋化肥,已知每只船载的化肥袋数相等且至少载7 袋,问
26、每次应有多少只船,每只船载多少袋化肥?(每只船至多载 50 袋化肥)3、在乘积 1000999998 321 中,末尾连续有多少个0?4、已知三个质数 a、b、c,它们的积等于 30,求适合条件的a、b、c 的值。5、证明:存在 2006个连续数,它们都是合数。名师资料总结-精品资料欢迎下载-名师精心整理-第 15 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)16 1.5 公因数与最大公因数 公因数:几个数公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。如果 a1,a2,an和 d 都是正整数,且da1,da2,,dan,那么 d 叫做a1,a2,an的公
27、因数,公因数中最大的叫做最大公因数,记作(a1,a2,an)。()互质数:公因数只有1 的两个数,叫做互质数,也叫互素。成互质关系的两个数,有下列几种情况:1 和任何自然数互质;相邻的两个自然数互质;两个不同的质数互质;相邻的两个奇数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公因数只有1 时,这两个合数互质;如果几个数中任意两个都互质,就说这几个数两两互质。两个数的最大公因数的特殊情况:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数;如果两个数是互质数,它们的最大公因数就是1。求几个数的最大公因数的方法:列举法:分别列举出每个数的所有因素,然后从公因数中找出
28、最大的一个公因数,就是这几个数的最大公因数。分解素因数法:分别将每个数分解素因数,然后将所有公有的素因数连乘,所得的积就是它们的最大公因数。名师资料总结-精品资料欢迎下载-名师精心整理-第 16 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)17 短除法:用所求的几个数的公因数去除这几个数,除到所得的商没有公因数为止,然后将左边除数连乘,所得的积就是它们的最大公因数。例 1:用短除法求 12 和 42 的最大公因数。2 12 42 3 6 21 2 7 12和 42 的最大公因数是 236。例 2:用短除法求 84、126和 210的最大公因数。2 84 126 210 3 42 6
29、3 105 7 14 21 35 2 3 5 84、126和 210 的最大公因数是 23742。例 3:在 3 和 9、4 和 9、3 和 7、7 和 14、14 和 15 五对数中,哪几对数是互素的?解:根据互素的概念,如果两个整数只有公因数1,则这两个数互素。所以,在这五对数中,4 和 9、3 和 7、14 和 15 这三对只有公因数1,所以这三对数互素。例 4:植树节这天,老师带领24 名女生和 32 名男生到植物园种树。老师把这些学生分成人数相等的若干个小组,每个小组中男生人数相等。请问,这56名同学最多能分成几组?()解:分成的组数能整除24 和 32,也就是 24 和 32 的因
30、数,题目实际上是求24 和32 的最大公因数。(24,32)8 答:这 56名同学最多能分成8 个组。练习 求 8,9 和 30 的最大公因数。名师资料总结-精品资料欢迎下载-名师精心整理-第 17 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)18 求 18 和 30 的最大公因数。用短除法求 60 和 72 的最大公因数。用短除法求 48、72 和 120 的最大公因数。练习 1.4()1、2520 的因数有多少个?2、求 24,44,60 的最大公因数。11111 3、分数是不是最简分数?15015 名师资料总结-精品资料欢迎下载-名师精心整理-第 18 页,共 23 页 -初
31、中数学知识点梳理(沪教市北综合版)19 4、一块长方形木料,长72cm,宽 60cm,高 36cm,请你把它锯成同样大的正方形木块,且木块的体积要最大,木料又不能剩,算一算可以锯成几块?5、有一级茶叶 165克,二级茶叶 198克,三级茶叶 242克,三者价值相等,现将这三种茶叶分别装袋(均为整克数),每袋价值相等,价格最低,怎样分装?1.6 公倍数与最小公倍数 公倍数和最小公倍数:两个或多个数都有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。如果 a1,a2,an和 m都是正整数,且a1m,a2m,,anm,那么 m叫做 a1,a2,an的公倍数,公倍数中最小的叫做
32、最小公倍数,记作a1,a2,an。()几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。两个数的最小公倍数的特殊情况:如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数;如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。求几个数的最小公倍数的方法:枚举法:分别列出每个数的倍数,然后找出它们的公倍数,其中最小的一个就是它们的最小公倍数。分解素因数法:分别将每个数分解素因数,然后取它们所有公有的素因数,再取它们各自剩余的素因数,将这些素因数连乘,所得的积就是这两个数的最小公倍数。短除法:a.两个数的最小公倍数:用两个数的公因数去除这两个数,除到所有的商互素为止,然后将
33、所有除数和最后得到的商连乘,所得的积就是这两个数的最小公倍数。名师资料总结-精品资料欢迎下载-名师精心整理-第 19 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)20 b.三个数的最小公倍数:首先,用三个数的公因数去除每个数,除到三个数的商互素为止;其次,再用每两个数的公因数去除每个数,除到三个数的商成为两两互素(任意的两个商互素)为止;第三,把这些除数和最后的商相乘,所得的积就是这三个数的最小公倍数。例 1:用短除法求 12 和 42 的最小公倍数。2 12 42 3 6 21 2 7 12和 42 的最小公倍数是 232784。例 2:用短除法求 84、126和 210的最大公
34、因数。2 84 126 144 3 42 63 72 7 14 21 24 2 2 3 24 3 1 3 12 1 1 4 84、126和 210 的最小公倍数是 23723114 1008。例 3:求 18 和 30的最小公倍数。解:方法一:18 的倍数有 18,36,54,72,9030 的倍数有 30,60,90,120,150所以 18 和 30的最小公倍数为90。方法二:把 18 和 30 分解质因数:1823330235取出所有公有的素因数(1 个 2 一个 3),再取各自剩余的素因数(3 和 5),将这些连乘,即:233590,所得的积 90 即是它们的最小公倍数。方法三:2 1
35、8 30 3 9 15 名师资料总结-精品资料欢迎下载-名师精心整理-第 20 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)21 3 5 18和 30 的最小公倍数是 233590。例 4:一些小朋友分组做游戏,第一次分组每组4 人余下 2 人,第二次分组每组5人也余下 5 人,第三次分组每组6 人还是余下 2 人。问最少有多少名小朋友做游戏?解:根据题意,要求最少有多少名小朋友做游戏,就是在求出4、5、6 这三个数的最小公倍数后,再加上2。2 4 5 6 2 5 3 4、5、6 的最小公倍数是 225360,60262(名)答:最少有 62 名小朋友在做游戏。例 5:三角形三边的
36、长a、b、c 都是整数,且 a,b,c 60,(a,b)4,(b,c)3,求 abc 的最小值。()解:因为(a,b)4,(b,c)3,所以 b 必须是 43 的倍数,由于是求 abc 的最小值,可以设定b 为 12,根据(a,b)4,也可以设定 a 为 4,因为a,b,c 60,(b,c)3,所以 c 至少必须有 3、5 两个因素,c 最小为 15,所以,abc 的最小值为 4121531。答:abc 的最小值为 31。练习 求最小公倍数。31 和 93 7 和 13 名师资料总结-精品资料欢迎下载-名师精心整理-第 21 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)22 用短除
37、法求最小公倍数:24,36 10,12,15 某车站,每隔 8 分钟开出一辆电车,每隔 10 分钟开出一辆汽车。上午9 时,有一辆电车与一辆汽车同时开出,求 9时以后再过多久电车与汽车第一次同时发车?重阳节,欣欣中学的师生到敬老院看望老人,他们共准备了 320个苹果,240 个橘子,200个梨,来慰问老人。问用这些果品,最多可以分成多少份同样的礼物(水果必须全部分完)?在每份礼物中,苹果、橘子、梨各多少个?在上海火车站,地铁 1 号线每隔 3 分钟发车,轨道交通 3 号线每隔 4 分钟发车,轨道交通 4 号线每隔 5 分钟发车。如果1 号线、3 号线、4 号线早上 6:00 同时发车,那么至少再过多少时间它们又同时发车?名师资料总结-精品资料欢迎下载-名师精心整理-第 22 页,共 23 页 -初中数学知识点梳理(沪教市北综合版)23 练习 1.5()1、求 2520 和 5940 的最大公因数和最小公倍数。2、用分解质因数的方法求24 和 90 的最大公因数和最小公倍数。3、张三、李四、王五三位同学分别发出新年贺卡x、y、z 张。如果已知 x、y、z的最小公倍数为60,x 和 y 额最大公因数为4,y 和 z 的最大公因数为3,那么张三发出的新年贺卡共有多少张?名师资料总结-精品资料欢迎下载-名师精心整理-第 23 页,共 23 页 -
限制150内