高考卷 江苏省高考数学试卷.doc
《高考卷 江苏省高考数学试卷.doc》由会员分享,可在线阅读,更多相关《高考卷 江苏省高考数学试卷.doc(68页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年江苏省高考数学试卷一.填空题1(5分)已知集合A=1,2,B=a,a2+3若AB=1,则实数a的值为 2(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 3(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件4(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是 5(5分)若tan()=则tan= 6(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O
2、的体积为V2,则的值是 7(5分)记函数f(x)=定义域为D在区间4,5上随机取一个数x,则xD的概率是 8(5分)在平面直角坐标系xOy中,双曲线y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是 9(5分)等比数列an的各项均为实数,其前n项为Sn,已知S3=,S6=,则a8= 10(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元要使一年的总运费与总存储费用之和最小,则x的值是 11(5分)已知函数f(x)=x32x+ex,其中e是自然对数的底数若f(a1)+f(2a2)0则实数a的取值范围是
3、 12(5分)如图,在同一个平面内,向量,的模分别为1,1,与的夹角为,且tan=7,与的夹角为45若=m+n(m,nR),则m+n= 13(5分)在平面直角坐标系xOy中,A(12,0),B(0,6),点P在圆O:x2+y2=50上若20,则点P的横坐标的取值范围是 14(5分)设f(x)是定义在R上且周期为1的函数,在区间0,1)上,f(x)=,其中集合D=x|x=,nN*,则方程f(x)lgx=0的解的个数是 二.解答题15(14分)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD求证:(1)EF平面ABC;
4、(2)ADAC16(14分)已知向量=(cosx,sinx),=(3,),x0,(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值17(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(ab0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标18(16分)如图,水平放置的正四棱柱形玻璃容器和正四棱台形玻璃容器的高均为32cm,容器的底面对角线AC的长为10cm,容器的两底面对
5、角线EG,E1G1的长分别为14cm和62cm分别在容器和容器中注入水,水深均为12cm现有一根玻璃棒l,其长度为40cm(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;(2)将l放在容器中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度19(16分)对于给定的正整数k,若数列an满足:ank+ank+1+an1+an+1+an+k1+an+k=2kan对任意正整数n(nk)总成立,则称数列an是“P(k)数列”(1)证明:等差数列an是“P(3)数列”;(2)若数列an既是“P(2)数列”,又是“
6、P(3)数列”,证明:an是等差数列20(16分)已知函数f(x)=x3+ax2+bx+1(a0,bR)有极值,且导函数f(x)的极值点是f(x)的零点(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b23a;(3)若f(x),f(x)这两个函数的所有极值之和不小于,求a的取值范围二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21如图,AB为半圆O的直径,直线PC切半圆O于点C,APPC,P为垂足求证:(1)PAC=CAB;(2)AC2 =APAB选修4-2:矩阵与变换22已知矩阵A=,B=(1)求AB;
7、(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程选修4-4:坐标系与参数方程23在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数)设P为曲线C上的动点,求点P到直线l的距离的最小值选修4-5:不等式选讲24已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd8【必做题】25如图,在平行六面体ABCDA1B1C1D1中,AA1平面ABCD,且AB=AD=2,AA1=,BAD=120(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角BA1DA的正弦值26已知一个口袋有m个白球,n个黑球(m,n
8、N*,n2),这些球除颜色外全部相同现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,m+n)123m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)2017年江苏省高考数学试卷参考答案与试题解析一.填空题1(5分)(2017江苏)已知集合A=1,2,B=a,a2+3若AB=1,则实数a的值为1【考点】1E:交集及其运算菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;5J :集合【分析】利用交集
9、定义直接求解【解答】解:集合A=1,2,B=a,a2+3AB=1,a=1或a2+3=1,解得a=1故答案为:1【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用2(5分)(2017江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是【考点】A5:复数代数形式的乘除运算菁优网版权所有【专题】35 :转化思想;5N :数系的扩充和复数【分析】利用复数的运算法则、模的计算公式即可得出【解答】解:复数z=(1+i)(1+2i)=12+3i=1+3i,|z|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础
10、题3(5分)(2017江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件【考点】B3:分层抽样方法菁优网版权所有【专题】11 :计算题;35 :转化思想;4O:定义法;5I :概率与统计【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目【解答】解:产品总数为200+400+300+100=1000件,而抽取60件进行检验,抽样比例为=,则应从丙种型号的产品中抽取300=18件,故答案为:18【点评】本题的考点是分层抽样
11、分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取4(5分)(2017江苏)如图是一个算法流程图:若输入x的值为,则输出y的值是2【考点】EF:程序框图菁优网版权所有【专题】11 :计算题;38 :对应思想;4A :数学模型法;5K :算法和程序框图【分析】直接模拟程序即得结论【解答】解:初始值x=,不满足x1,所以y=2+log2=2=2,故答案为:2【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题5(5分)(2017江苏)若tan()=则tan=【考点】GR:两角和与差的正切函数菁优网
12、版权所有【专题】11 :计算题;35 :转化思想;4O:定义法;56 :三角函数的求值【分析】直接根据两角差的正切公式计算即可【解答】解:tan()=6tan6=tan+1,解得tan=,故答案为:【点评】本题考查了两角差的正切公式,属于基础题6(5分)(2017江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是【考点】L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积菁优网版权所有【专题】11 :计算题;35 :转化思想;5F :空间位置关系与距离【分析】设出球的半径,求出圆柱
13、的体积以及球的体积即可得到结果【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:R22R=2R3则=故答案为:【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力7(5分)(2017江苏)记函数f(x)=定义域为D在区间4,5上随机取一个数x,则xD的概率是【考点】CF:几何概型菁优网版权所有【专题】35 :转化思想;4R:转化法;5I :概率与统计【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可【解答】解:由6+xx20得x2x60,得2x3,则D=2,3,则在区间4,5上随机取一个数x,则xD的概率P=,故答案为:【点评】本题主要考查几何概型的
14、概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键8(5分)(2017江苏)在平面直角坐标系xOy中,双曲线y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是【考点】KC:双曲线的简单性质菁优网版权所有【专题】11 :计算题;35 :转化思想;5D :圆锥曲线的定义、性质与方程【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积【解答】解:双曲线y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,),F1(2,0)F2(2,0)则四边形F1PF2Q的面积是
15、:=2故答案为:2【点评】本题考查双曲线的简单性质的应用,考查计算能力9(5分)(2017江苏)等比数列an的各项均为实数,其前n项为Sn,已知S3=,S6=,则a8=32【考点】88:等比数列的通项公式菁优网版权所有【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列【分析】设等比数列an的公比为q1,S3=,S6=,可得=,=,联立解出即可得出【解答】解:设等比数列an的公比为q1,S3=,S6=,=,=,解得a1=,q=2则a8=32故答案为:32【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题10(5分)(2017江苏)某公司一年购
16、买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元要使一年的总运费与总存储费用之和最小,则x的值是30【考点】7F:基本不等式菁优网版权所有【专题】34 :方程思想;35 :转化思想;59 :不等式的解法及应用【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x42=240(万元)当且仅当x=30时取等号故答案为:30【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题11(5分)(2017江苏)已知函数f(x)=x32x+ex,其中e是自然对数
17、的底数若f(a1)+f(2a2)0则实数a的取值范围是1,【考点】6B:利用导数研究函数的单调性菁优网版权所有【专题】35 :转化思想;48 :分析法;51 :函数的性质及应用;53 :导数的综合应用【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a21a,运用二次不等式的解法即可得到所求范围【解答】解:函数f(x)=x32x+ex的导数为:f(x)=3x22+ex+2+2=0,可得f(x)在R上递增;又f(x)+f(x)=(x)3+2x+exex+x32x+ex=0,可得f(x)为奇函数,则f(a1)+f
18、(2a2)0,即有f(2a2)f(a1)=f(1a),即有2a21a,解得1a,故答案为:1,【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题12(5分)(2017江苏)如图,在同一个平面内,向量,的模分别为1,1,与的夹角为,且tan=7,与的夹角为45若=m+n(m,nR),则m+n=3【考点】9R:平面向量数量积的运算菁优网版权所有【专题】31 :数形结合;34 :方程思想;35 :转化思想;5A :平面向量及应用【分析】如图所示,建立直角坐标系A(1,0)由与的夹角为,且tan=7可得cos=,sin
19、=C可得cos(+45)=sin(+45)=B利用=m+n(m,nR),即可得出【解答】解:如图所示,建立直角坐标系A(1,0)由与的夹角为,且tan=7cos=,sin=Ccos(+45)=(cossin)=sin(+45)=(sin+cos)=B=m+n(m,nR),=mn,=0+n,解得n=,m=则m+n=3故答案为:3【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题13(5分)(2017江苏)在平面直角坐标系xOy中,A(12,0),B(0,6),点P在圆O:x2+y2=50上若20,则点P的横坐标的取值范围是5,1【考点】9R:平面向量数量积的运算;
20、7B:二元一次不等式(组)与平面区域菁优网版权所有【专题】11 :计算题;5B :直线与圆;5T :不等式【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+50,分析可得其表示表示直线2x+y+50以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(12x0,y0)(x0,6y0)=(12+x0)x0y0(6y0)=12x0+6y+x02+y0220,化为:12x06y0+300,即2x0y0+50,表示直线2xy+5=0以及直线上方的区域,联立,解可得x0=5或
21、x0=1,结合图形分析可得:点P的横坐标x0的取值范围是5,1,故答案为:5,1【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式14(5分)(2017江苏)设f(x)是定义在R上且周期为1的函数,在区间0,1)上,f(x)=,其中集合D=x|x=,nN*,则方程f(x)lgx=0的解的个数是8【考点】54:根的存在性及根的个数判断菁优网版权所有【专题】35 :转化思想;4R:转化法;51 :函数的性质及应用【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间0,1)上,f(x)=,其中集合D=x|x=,nN*,分析f(x)的图象与y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考卷 江苏省高考数学试卷 考卷 江苏省 高考 数学试卷
限制150内