2022年遗传算法在神经网络控制中的应用与实现 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年遗传算法在神经网络控制中的应用与实现 .pdf》由会员分享,可在线阅读,更多相关《2022年遗传算法在神经网络控制中的应用与实现 .pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第 13 卷第 5 期系统仿真学报Vol.13 No.5 2001 年 9月JOURNAL OF SYSTEM SIMULATION Sept.2001 文章编号哈尔滨工业大学航天学院,哈尔滨 150001比较了遗传算法与神经网络的特点同时阐明了遗传算法和神经网络结合的必要性该方法采用多层前向神经网络作为遗传搜索表示方式的思想用遗传算法来学习神经网络的权系数又具有神经网络的鲁棒性和自学习能力分析了遗传算法基本参数及神经网络结构设计了用遗传算法学习神经网络权系数的软件实现方法仿真结果显示了遗传算法快速学习神经网络权系数的能力有效地提高了多层前向神经网络权系数的学习效率与收敛精度克服了多层前向神经
2、网络传统的 学习算法精度低容易陷入局部极小的缺陷关键词神经网络适应度函数中图分类号A Applying and Realizing of Genetic Algorithm in Neural Networks Control YANG Guo-jun,CUI Ping-yuan,LI Lin-lin(School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)Abstract:The characteristics of neural networks and genetic algorithm are
3、described.The possibility and the method of the application of genetic algorithm to the multi-layer forward neural networks are discussed.The necessity of combining neural networks with genetic algorithm is demonstrated.A kind of neural networks control method is proposed in which genetic algorithm
4、and neural networks are mixed.In this method,the notion of using the multi-layer forward neural networks as the representation method of the genetic searching technique is introduced,and the weighs of neural networks are trained by genetic algorithm.So the method remains the global stochastically se
5、arching ability of genetic algorithm and the robustness and self-learning ability of neural networks.After the neural networks with genetic algorithm are combined organically,the selection of the basic parameters in genetic algorithm and the structure of neural networks and the nodes of the hidden l
6、ayer and the output layer are all analyzed.The software in which the weights of neural networks are learned by genetic algorithm is designed.The inverse kinematics solution of the robot manipulators and the inverted pendulum control are successfully realized by the combination of genetic algorithm a
7、nd neural networks.The simulation results indicate the capability of the new method in fast learning of neural networks and guarantee a rapid global convergence.Moreover,the premature convergence in genetic algorithm is restrained effectively,and the learning efficiency and the convergent precision
8、for the weights of the multi-layer forward neural networks are improved greatly.The motivation of this approach is to overcome the shortcomings of traditional error back propagation algorithm for updating the weights of the multi-layer forward neural networks,such as the low precision of the solutio
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年遗传算法在神经网络控制中的应用与实现 2022 遗传 算法 神经网络 控制 中的 应用 实现
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内