同济第六版《高等数学》教案WORD版-第11章-无穷级数.doc
《同济第六版《高等数学》教案WORD版-第11章-无穷级数.doc》由会员分享,可在线阅读,更多相关《同济第六版《高等数学》教案WORD版-第11章-无穷级数.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第十一章 无穷级数教学目的: 1理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。2掌握几何级数及P级数的收敛及发散的条件。3掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。4掌握交错级数的莱布尼茨判别法。5了解任意项级数绝对收敛及条件收敛的概念,以及绝对收敛及条件收敛的关系。6了解函数项级数的收敛域及和函数的概念。7理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。8了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。9了解函数展
2、开为泰勒级数的充分必要条件。10掌握,和的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在-l,l上的函数展开为傅里叶级数,会将定义在0,l上的函数展开为正弦级数及余弦级数,会写出傅里叶级数的和的表达式。教学重点 : 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,和的麦克劳林展开式; 6、傅里叶级数。教学难点:1、 比较判别法的极限形式;2、 莱布尼茨判别法;3、 任意项级数的绝对收敛
3、及条件收敛;4、 函数项级数的收敛域及和函数;5、 泰勒级数;6、 傅里叶级数的狄利克雷定理。11. 1 常数项级数的概念和性质 一、常数项级数的概念 常数项级数: 给定一个数列 u1, u2, u3, , un, , 则由这数列构成的表达式 u1 + u2 + u3 + + un + 叫做常数项)无穷级数, 简称常数项)级数, 记为, 即其中第n项u n 叫做级数的一般项. 级数的部分和: 作级数的前n项和称为级数的部分和. 级数敛散性定义: 如果级数的部分和数列有极限s, 即, 则称无穷级数收敛, 这时极限s叫做这级数的和, 并写成如果没有极限, 则称无穷级数发散. 余项: 当级数收敛时,
4、 其部分和s n是级数的和s的近似值, 它们之间的差值 rn=s-sn=un+1+un+2+ 叫做级数的余项. 例1 讨论等比级数(几何级数)的敛散性, 其中a0, q叫做级数的公比. 例1 讨论等比级数(a0)的敛散性. 解 如果q1, 则部分和 当|q|1时, 因为, 所以此时级数发散. 如果|q|=1, 则当q=1时, sn =na, 因此级数发散; 当q=-1时, 级数成为 a-a+a-a+ , 时|q|=1时, 因为sn 随着n为奇数或偶数而等于a或零, 所以sn的极限不存在, 从而这时级数也发散. 综上所述, 如果|q|1, 则级数收敛, 其和为; 如果|q|1, 则级数发散. 仅
5、当|q|0, nN). 若收敛, 则收敛; 若发散, 则发散. 设Sun和Svn都是正项级数, 且unkvn(k0, nN). 若级数Svn收敛, 则级数Sun收敛; 反之, 若级数Sun发散, 则级数Svn发散. 证 设级数收敛于和s, 则级数的部分和 sn=u1+u2+ +unv1+ v2+ +vns (n=1, 2, ), 即部分和数列sn有界, 由定理1知级数收敛. 反之, 设级数发散, 则级数必发散. 因为若级数收敛, 由上已证明的结论, 将有级数也收敛, 及假设矛盾. 证 仅就unvn (n=1, 2, )情形证明. 设级数Svn收敛, 其和为s, 则级数Sun的部分和 sn=u1
6、+ u2+ + unv1+v2+ +vns (n=1, 2, ), 即部分和数列sn有界. 因此级数Sun收敛. 反之, 设级数Sun发散, 则级数Svn必发散. 因为若级数Svn收敛, 由上已证明的结论, 级数Sun也收敛, 及假设矛盾. 推论 设和都是正项级数, 如果级数收敛, 且存在自然数N, 使当nN时有unkvn(k0)成立, 则级数收敛; 如果级数发散, 且当nN时有unkvn(k0)成立, 则级数发散. 例1 讨论p-级数的收敛性, 其中常数p0. 例1 讨论p-级数的收敛性. 解 设p1. 这时, 而调和级数发散, 由比较审敛法知, 当p1时级数发散. 设p1. 此时有 (n=
7、2, 3, ). 对于级数, 其部分和因为. 所以级数收敛. 从而根据比较审敛法的推论1可知, 级数当p1时收敛. 综上所述, p-级数当p1时收敛, 当p1时发散. 解 当p1时, , 而调和级数发散, 由比较审敛法知, 当p1时级数发散. 当p1时, (n=2, 3, ). 而级数是收敛的, 根据比较审敛法的推论可知, 级数当p1时收敛.提示: 级数的部分和为因为, 所以级数收敛. p-级数的收敛性: p-级数当p1时收敛, 当p1时发散. 例2 证明级数是发散的. 证 因为, 而级数是发散的, 根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的极限形式) 设和都是正项级数, 如
8、果(0l+), 则级数和级数同时收敛或同时发散. 定理3(比较审敛法的极限形式) 设和都是正项级数, (1)如果(0l+), 且级数收敛, 则级数收敛; (2)如果, 且级数发散, 则级数发散. 定理3(比较审敛法的极限形式) 设Sun和Svn都是正项级数, (1)如果lim(un/vn)=l(0l+), 且Svn收敛, 则Sun收敛; (2)如果lim(un/vn)=l(0N时, 有不等式 , 即, 再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数的收敛性. 解 因为, 而级数发散, 根据比较审敛法的极限形式, 级数发散. 例4 判别级数的收敛性. 解 因为, 而级数收敛, 根
9、据比较审敛法的极限形式, 级数收敛. 定理4(比值审敛法, 达朗贝尔判别法) 若正项级数的后项及前项之比值的极限等于r: 则当r1(或)时级数发散; 当r =1时级数可能收敛也可能发散. 定理4(比值审敛法, 达朗贝尔判别法) 若正项级数满足, 则当r1(或)时级数发散. 当r =1时级数可能收敛也可能发散. 定理4(比值审敛法, 达朗贝尔判别法)设为正项级数, 如果则当r1(或)时级数发散; 当r =1时级数可能收敛也可能发散. 例5 证明级数是收敛的. 解 因为, 根据比值审敛法可知所给级数收敛. 例6 判别级数的收敛性. 解 因为, 根据比值审敛法可知所给级数发散. 例7 判别级数的收敛
10、性. 解 . 这时r=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性. 因为, 而级数收敛, 因此由比较审敛法可知所给级数收敛. 解 因为, 而级数收敛, 因此由比较审敛法可知所给级数收敛. 提示: , 比值审敛法失效. 因为, 而级数收敛, 因此由比较审敛法可知所给级数收敛. 定理5(根值审敛法, 柯西判别法) 设是正项级数, 如果它的一般项un的n次根的极限等于r: 则当r1(或)时级数发散; 当r=1时级数可能收敛也可能发散. 定理5(根值审敛法, 柯西判别法) 若正项级数满足, 则当r1(或)时级数发散. 当r=1时级数可能收敛也可能发散. 定理5(根值审敛法, 柯西判别法)
11、 设为正项级数, 如果则当r1(或)时级数发散; 当r=1时级数可能收敛也可能发散. 例8 证明级数是收敛的. 并估计以级数的部分和sn近似代替和s所产生的误差. 解 因为, 所以根据根值审敛法可知所给级数收敛. 以这级数的部分和sn 近似代替和s所产生的误差为 例6判定级数的收敛性. 解 因为所以, 根据根值审敛法知所给级数收敛. 定理6(极限审敛法) 设为正项级数, (1)如果, 则级数发散; (2)如果p1, 而, 则级数收敛. 例7 判定级数的收敛性. 解 因为, 故根据极限审敛法, 知所给级数收敛. 例8 判定级数的收敛性. 解 因为 根据极限审敛法, 知所给级数收敛. 二、交错级数
12、及其审敛法 交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为, 其中. 例如, 是交错级数, 但不是交错级数. 定理6(莱布尼茨定理) 如果交错级数满足条件: (1)unun+1 (n=1, 2, 3, ); (2), 则级数收敛, 且其和su1, 其余项rn的绝对值|rn|un+1. 定理6(莱布尼茨定理) 如果交错级数满足: (1); (2), 则级数收敛, 且其和su1, 其余项rn的绝对值|rn|un+1. 简要证明: 设前n项部分和为sn. 由s2n=(u1-u2)+(u3-u4)+ +(u2n 1-u2n), 及 s2n=u1-(u2-u3)+(u4
13、-u5)+ +(u2n-2-u2n-1)-u2n 看出数列s2n单调增加且有界(s2nu1), 所以收敛. 设s2ns(n), 则也有s2n+1=s2n+u2n+1s(n), 所以sns(n). 从而级数是收敛的, 且snu1. 因为 |rn|=un+1-un+2+ 也是收敛的交错级数, 所以|rn|un+1. 例9 证明级数收敛, 并估计和及余项. 证 这是一个交错级数. 因为此级数满足 (1)(n=1, 2, ), (2), 由莱布尼茨定理, 级数是收敛的, 且其和su1=1, 余项. 三、绝对收敛及条件收敛: 绝对收敛及条件收敛: 若级数收敛, 则称级数绝对收敛; 若级数收敛, 而级数发
14、散, 则称级条件收敛. 例10 级数是绝对收敛的, 而级数是条件收敛的. 定理7 如果级数绝对收敛, 则级数必定收敛. 值得注意的问题: 如果级数发散, 我们不能断定级数也发散. 但是, 如果我们用比值法或根值法判定级数发散, 则我们可以断定级数必定发散. 这是因为, 此时|un|不趋向于零, 从而un也不趋向于零, 因此级数也是发散的. 例11 判别级数的收敛性. 解 因为|, 而级数是收敛的, 所以级数也收敛, 从而级数绝对收敛. 例12 判别级数的收敛性. 解: 由, 有, 可知, 因此级数发散. 11. 3 幂级数 一、函数项级数的概念 函数项级数: 给定一个定义在区间I 上的函数列u
15、n(x), 由这函数列构成的表达式 u1(x)+u2(x)+u3(x)+ +un(x)+ 称为定义在区间I上的(函数项)级数, 记为. 收敛点及发散点: 对于区间I内的一定点x0, 若常数项级数收敛, 则称点x0是级数的收敛点. 若常数项级数发散, 则称点x0是级数的发散点. 收敛域及发散域: 函数项级数的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数: 在收敛域上, 函数项级数的和是x的函数s(x), s(x)称为函数项级数的和函数, 并写成. un(x)是的简便记法, 以下不再重述. 在收敛域上, 函数项级数un(x)的和是x的函数s(x), s(x)称为函数项
16、级数un(x)的和函数, 并写成s(x)=un(x). 这函数的定义就是级数的收敛域, 部分和: 函数项级数的前n项的部分和记作sn(x), 函数项级数un(x)的前n项的部分和记作sn(x), 即 sn(x)= u1(x)+u2(x)+u3(x)+ +un(x). 在收敛域上有或sn(x)s(x)(n) . 余项: 函数项级数的和函数s(x)及部分和sn(x)的差 rn (x)=s(x)-sn(x)叫做函数项级数的余项. 函数项级数un(x)的余项记为rn (x), 它是和函数s(x)及部分和sn(x)的差 rn (x)=s(x)-sn(x). 在收敛域上有. 二、幂级数及其收敛性 幂级数:
17、 函数项级数中简单而常见的一类级数就是各项都幂函数的函数项级数, 这种形式的级数称为幂级数, 它的形式是 a0+a1x+a2x2+ +anxn+ , 其中常数a0, a1, a2, , an , 叫做幂级数的系数. 幂级数的例子: 1+x+x2+x3+ +xn + , 注: 幂级数的一般形式是 a0+a1(x-x0)+a2(x-x0)2+ +an(x-x0)n+ , 经变换t=x-x0就得a0+a1t+a2t2+ +antn+ . 幂级数 1+x+x2+x3+ +xn + 可以看成是公比为x的几何级数. 当|x|1时它是收敛的; 当|x|1时, 它是发散的. 因此它的收敛域为(-1, 1),
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 同济 第六 教案 WORD 11 无穷 级数
限制150内