9人工智能导论 (3).pdf
《9人工智能导论 (3).pdf》由会员分享,可在线阅读,更多相关《9人工智能导论 (3).pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Three Perspectives on Machine Learning Artificial Intelligence 34 9. Perspectives about Machine Learning 9.1. What is Machine Learning 9.2. History of Machine Learning 9.3. Why Different Perspectives 9.4. Three Perspectives on Machine Learning 9.5. Applications and Terminologies Contents: Artificial
2、 Intelligence 35 9.4. Three Perspectives on Machine Learning 9.4.1. Learning Tasks 9.4.2. Learning Paradigms 9.4.3. Learning Models Contents: Artificial Intelligence : Learning : Perspectives 36 The learning tasks are used to denote the general problems that can be solved by learning with desired ou
3、tput. 学习任务用于表示可以用机器学习解决的基本问题。 What are Learning Tasks 什么是学习任务 9.4.1. Learning Tasks Various types of problems arising in applications: 应用中会产生各种类型的问题: computer vision, 计算机视觉, pattern recognition, 模式识别, natural language processing, 自然语言处理, etc. 等等。 Why Study Learning Tasks 为什么要研究学习任务 Artificial Intell
4、igence : Learning : Perspectives 37 Typical Tasks in Machine Learning 机器学习中的典型任务 9.4.1. Learning Tasks Tasks 任务 Brief Statements 简短描述 Typical algorithm 典型算法 Classification 分类 Inputs are divided into two or more known classes. 将输入划分成两个或多个类别。 SVM 支撑向量机 Regression 回归 Outputs are continuous values rathe
5、r than discrete ones. 输出是连续值而不是离散的。 Bayesian linear regression 贝叶斯线性回归 Clustering 聚类 Inputs are divided into groups which are not known beforehand. 输入被划分为若干个事先未知的组。 k-means k-均值 Ranking 排名 Data transformation in which values are replaced by their rank. 用它们的排名来代替值的数据转换。 PageRank 网页排名 Density estimati
6、on 密度估计 Find the distribution of inputs in some space. 寻找某个空间中输入的分布。 Boosting Density Estimation 增强式密度估计 Dimensionality reduction 降维 Simplify inputs by mapping them into a lower dimensional space. 通过将输入映射到低维空间来将其简化。 Isomap 等距特征映射 Optimization 优化 Find the best solution from all feasible solutions 从所有
7、可能的解中寻找最优解。 Q-learning Q-学习 Artificial Intelligence : Learning : Perspectives 38 Case study: Credit scoring 信用评分 9.4.1. Learning Tasks IF income 1AND savings 2 THEN low-risk ELSE high-risk Two classes: Low-risk and high-risk customers. 二分类:低风险和高风险客户。 A customer information makes up the input to one
8、of the two classes. 客户信息使该输入构成二分类中的一个。 After training with past data, a classification rule learned may be: 用过去的数据训练之后,可以学习得到如下分类规则: Artificial Intelligence 39 9.4. Three Perspectives on Machine Learning 9.4.1. Learning Tasks 9.4.2. Learning Paradigms 9.4.3. Learning Models Contents: Artificial Inte
9、lligence : Learning : Perspectives 40 The learning paradigms are used to denote the typical scenarios that are happened in machine learning. 学习范式用于表示机器学习中发生的典型场景。 What are Learning Paradigms 什么是学习范式 9.4.2. Learning Paradigms by the scenarios or styles in machine learning about 根据机器学习的典型场景或样式: how it
10、 learns from data, 它怎样从数据中学习, how it interactives with environment. 它如何同环境互动。 How to Distinguish Learning Paradigms 怎样区分学习范式 Artificial Intelligence : Learning : Perspectives 41 Typical Paradigms in Machine Learning 机器学习中的典型范式 9.4.2. Learning Paradigms Paradigms 范式 Brief Statements 简短描述 Typical Algo
11、rithm 典型算法 Supervised 有监督 The algorithm is trained by a set of labeled data, and makes predictions for all unseen points. 算法采用一组标注好的数据进行训练,再对所有的未知点做出 预测。 Support vector machines 支撑向量机 Unsupervised 无监督 The algorithm exclusively receives unlabeled data, and makes predictions for all unseen points. 算法仅
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能导论
限制150内