2022-2023学年人教A版(2019)必修第一册1.5 全称量词与存在量词 课时练习(Word版含答案) (1).doc
《2022-2023学年人教A版(2019)必修第一册1.5 全称量词与存在量词 课时练习(Word版含答案) (1).doc》由会员分享,可在线阅读,更多相关《2022-2023学年人教A版(2019)必修第一册1.5 全称量词与存在量词 课时练习(Word版含答案) (1).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.5 全称量词与存在量词课时练习一、单选题1关于命题,下列判断正确的是()A命题“每个正方形都是矩形”是存在量词命题B命题“有一个素数不是奇数”是全称量词命题C命题“”的否定为“”D命题“每个整数都是有理数”的否定为“每个整数都不是有理数”2命题“对任意,都有”的否定为()A对任意,都有B对任意,都有C存在,使得D存在,使得3已知命题“,”是假命题,则实数的取值范围是()ABCD4下列命题中全称命题的个数为()平行四边形的对角线互相平分;梯形有两边平行;存在一个菱形,它的四条边不相等A0B1C2D35下列命题中是全称量词命题,并且又是真命题的是()A是无理数B,使为偶数C对任意,都有D所有菱
2、形的四条边都相等6命题“,”的否定是()A,B,C,D,二、多选题7下列命题中的真命题是()AB若ab0,则C对顶角不一定相等D, x2-2x48取整函数:不超过的最大整数,如,取整函数在现实生活中有着广泛的应用,如停车收费、出租车收费等等都是按照“取整函数”进行计费的,以下关于“取整函数”的性质是真命题有()ABC则D9已知全集为,是的非空子集且,则下列关系一定正确的是()A,且B,C,或D,且10已知集合,是全集的两个非空子集,如果且,那么下列说法中正确的有()A,有B,使得C,有D,使得11下列说法错误的是().A若,则B若,则或C“是”的充分不必要条件D“,”的否定形式是“,”三、填空
3、题12命题“,”的否定是_13若命题xR,x2+4mx+10为假命题,则实数m的取值范围是_14能够说明“设是任意实数,若,则”是假命题的一组整数的值依次为_.四、解答题15把下列定理表示的命题写成含有量词的命题:(1)勾股定理;(2)三角形内角和定理.16判断下列命题是全称量词命题还是存在量词命题,请写出它们的否定,并判断其真假:(1):对任意的,都成立;(2):,使17是否存在整数m,使得命题“”是真命题?若存在,求出m的值;若不存,说明理由参考答案与试题解析1C2C3C4C5D6D7AD8BC9AB10BC11AC12,13,1415(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180.16(1)全称量词命题,:“,使”,假命题;(2)存在量词命题,:“,有”,真命题17存在整数.4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年人教A版2019必修第一册1.5 全称量词与存在量词 课时练习Word版含答案 1 2022 2023 学年 2019 必修 一册 1.5 全称 量词 存在 课时 练习
链接地址:https://www.taowenge.com/p-41142878.html
限制150内