函数的单调性的判定及应用 讲义——2023届高三数学一轮复习(Word版含答案).docx
《函数的单调性的判定及应用 讲义——2023届高三数学一轮复习(Word版含答案).docx》由会员分享,可在线阅读,更多相关《函数的单调性的判定及应用 讲义——2023届高三数学一轮复习(Word版含答案).docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、函数的单调性的判定及应用一、基础知识:1、对单调性的理解:(1)它是一个区间概念;(2)由函数单调性的定义知,可以正反互推;(3)函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式;(4)函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。2、常见函数的单调性:一次函数.当时,是这个函数的单调增区间;当时,是这个函数的单调减区间.反比例函数.当时,和都是这个函数的单调减区间,当时,和都是这个函数的单调增区间.二次函数.当时是这个函数的单调减区间,是它的单调增区间;当时是这个函数的单调增区间,是它的单调减区间;指数函数.当时,是这个函数
2、的单调增区间,当时,是这个函数的单调减区间.对数函数. 当时,是这个函数的单调增区间,当时,是它的单调减区间.对勾函数: 增区间为:,减区间为:;3、单调性的判定法:定义法:即(1)设x,x是所研究区间内任两个自变量,且xx;(2)判定f(x)与f(x)的大小;(3)作差比较或作商比较. 图象法:单调性的运算性质(实质上是不等式性质):复合函数单调性判断法则:规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。即我们所说的“同增异减”规律。导数法二、题型:(一)判断或证明函数的单调性:1如果函数在上是增函数,那么对于任意的,下列结论中不正确的是(
3、C ) 2. 给定函数,其中在区间上单调递减的函数序号是( C)A. B. C. D. 3已知定义在R上的函数满足:对任意的,都有;当时,有(1)利用奇偶性的定义,判断的奇偶性;(2)利用单调性的定义,判断的单调性;(3)若,解不等式解析:(1)令,得,得将“y”用“”代替,得,即,为奇函数(2)设、,且,则,即,在R上是增函数(3)=6,。不等式即为,是R上的增函数,于是,解之得。(二)求函数的单调区间:1求函数的单调递增区间解:yx22|x|3函数图象如图所示:函数yx22|x|3的单调递增区间是(,1和0,12.函数的单调减区间为 (三)函数单调性的应用:、求值或求参数的取值范围:1.若
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数的单调性的判定及应用 讲义2023届高三数学一轮复习Word版含答案 函数 调性 判定 应用 讲义 2023 届高三 数学 一轮 复习 Word 答案
限制150内