高考卷 普通高等学校招生全国统一考试(浙江卷)数学(理工类)全解全析.doc
《高考卷 普通高等学校招生全国统一考试(浙江卷)数学(理工类)全解全析.doc》由会员分享,可在线阅读,更多相关《高考卷 普通高等学校招生全国统一考试(浙江卷)数学(理工类)全解全析.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2007年普通高等学校招生全国统一考试(浙江卷)数学(理工类)全解全析第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的(1)“”是“”的()充分而不必要条件必要而不充分条件充分必要条件 既不充分也不必要条件【答案】:A【分析】:由可得,可得到,但得不到.故选A.(2)若函数,(其中,)的最小正周期是,且,则( )AB C D【答案】:D【分析】:由由故选D.(3)直线关于直线对称的直线方程是()【答案】:D【分析】:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于对称点为(2-x,y)在直线上,化简得故选答案D.
2、解法二:根据直线关于直线对称的直线斜率是互为相反数得答案A或D, 再根据两直线交点在直线选答案D.(4)要在边长为16米的正方形草坪上安装喷水龙头,使整个草坪 都能喷洒到水假设每个喷水龙头的喷洒范围都是半径为6米的圆面,则需安装这种喷水龙头的个数最少是()【答案】B【分析】:因为龙头的喷洒面积为36,正方形面积为256,故至少三个龙头。由于,故三个龙头肯定不能保证整个草坪能喷洒到水。当用四个龙头时,可将正方形均分四个小正方形,同时将四个龙头分别放在它们的中心,由于,故可以保证整个草坪能喷洒到水。(5)已知随机变量服从正态分布, ,则( )ABCD,【答案】:A【分析】:由又故选A.(6)若两条
3、异面直线外的任意一点,则()过点有且仅有一条直线与都平行过点有且仅有一条直线与都垂直过点有且仅有一条直线与都相交过点有且仅有一条直线与都异面【答案】:B【分析】:设过点P的直线为,若与l、m都平行,则l、m平行,与已知矛盾,故选项A错误。由于l、m只有惟一的公垂线,而过点P与公垂线平行的直线只有一条,故B正确。对于选项C、D可参考右图的正方体,设AD为直线l,为直线m;若点P在P1点,则显然无法作出直线与两直线都相交,故选项C错误。若P在P2点,则由图中可知直线均与l、m异面,故选项D错误。(7)若非零向量满足,则() 【答案】:C【分析】:由于是非零向量,则必有故上式中等号不成立 。 。故选
4、C.(8)设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( )yxOyxOyxOyxOABCD【答案】:D【分析】:检验易知A、B、C均适合,D中不管哪个为均不成立。(9)已知双曲线的左、右焦点分别为,是准线上一点,且,则双曲线的离心率是()【答案】:B【分析】:设准线与x轴交于A点. 在中, , 又 , 化简得 , 故选答案B(10)设是二次函数,若的值域是,则的值域是( )ABCD【答案】:C【分析】:要的值域是,则又是二次函数, 定义域连续,故不可能同时结合选项只能选C.第II卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分(11)已知复数,则复数 【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考卷 普通高等学校招生全国统一考试浙江卷数学理工类全解全析 考卷 普通高等学校 招生 全国 统一 考试 浙江 数学 理工类 全解全析
限制150内