【新教材精创】6.3.5 平面向量数量积的坐标表示 教学设计(1)-人教A版高中数学必修第二册.docx
《【新教材精创】6.3.5 平面向量数量积的坐标表示 教学设计(1)-人教A版高中数学必修第二册.docx》由会员分享,可在线阅读,更多相关《【新教材精创】6.3.5 平面向量数量积的坐标表示 教学设计(1)-人教A版高中数学必修第二册.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.3.5 平面向量数量积的坐标表示本节课选自普通高中课程标准数学教科书-必修第二册(人教A版)第六章平面向量及其应用,本节课主要学习平面向量数量积的坐标表示,模、夹角的坐标表示。前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模
2、、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础。课程目标学科素养A.掌握平面向量数量积坐标表示及模、夹角的公式。B.能用公式求向量的数量积、模、夹角;C.掌握两个向量垂直的坐标判断,会证明两向量垂直,以及能解决一些简单问题. 1.数学抽象:用数量积判断两个平面向量的垂直关系;2.逻辑推理
3、:证明两向量垂直,以及能解决一些简单问题. 3.数学运算:利用平面向量数量积解决有关长度、角度的问题;4.直观想象:用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系。1.教学重点:平面向量数量积坐标表示及模、夹角公式;2.教学难点:平面向量数量积的应用。多媒体教学过程教学设计意图核心素养目标1、 复习回顾,温故知新1. 平面向量的数量积(内积)的定义:【答案】2.两个向量的数量积的性质:【答案】二、探索新知探究:已知两个非零向量,怎样用向量的坐标表示?【答案】所以1.数量积的坐标表示:,故两个向量的数量积等于它们对应坐标的乘积的和。 思考1:设,则用坐标怎样表示?【答案
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材数学 新高考数学 高三数学 数学专题 数学学案 数学设计 数学课件 数学精练 数学模拟 数学考点
链接地址:https://www.taowenge.com/p-4133279.html
限制150内