【新教材精创】6.4.1 平面几何中的向量方法 教学设计(1)-人教A版高中数学必修第二册.docx
《【新教材精创】6.4.1 平面几何中的向量方法 教学设计(1)-人教A版高中数学必修第二册.docx》由会员分享,可在线阅读,更多相关《【新教材精创】6.4.1 平面几何中的向量方法 教学设计(1)-人教A版高中数学必修第二册.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、6.4.1 平面几何中的向量方法本节课选自普通高中课程标准数学教科书-必修第二册(人教A版)第六章平面向量及其应用,本节课主要学习用向量解决平面几何问题,进一步加深对向量工具性的理解。本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向
2、量方法解决几何问题的“三步曲”,也是本节的重点.课程目标学科素养A.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;B.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示;C.让学生深刻理解向量在处理平面几何问题中的优越性. 1.数学抽象:平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示;2.逻辑推理:用向量方法解决平面几何的问题的”三步曲”;3.数学运算:向量的线性运算及数量积表示;4. 直观想象:向量在处理平面几何问题中的优越性;5. 数学建模:通过向量运算的学习理解和体验
3、实际问题抽象为数学概念的过程和思想,增强数学的应用意识。1.教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”;2.教学难点:如何将几何等实际问题化归为向量问题.多媒体教学过程教学设计意图核心素养目标1、 复习回顾,情境引入1. 向量的三角形法则。特点:首尾相接,连首尾。向量的平行四边形法则特点:同一起点,对角线。2.向量减法的三角形法则。特点:共起点,连终点,方向指向被减向量。3.平面向量的夹角公式4.模5.共线向量定理6.由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材数学 新高考数学 高三数学 数学专题 数学学案 数学设计 数学课件 数学精练 数学模拟 数学考点
链接地址:https://www.taowenge.com/p-4133413.html
限制150内