理科数学-全真模拟卷03(新课标Ⅱ卷)(2月)(解析版).docx
《理科数学-全真模拟卷03(新课标Ⅱ卷)(2月)(解析版).docx》由会员分享,可在线阅读,更多相关《理科数学-全真模拟卷03(新课标Ⅱ卷)(2月)(解析版).docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全真模拟卷03(新课标卷)理科数学本卷满分150分,考试时间120分钟。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设i为虚数单位,复数z=,则|zi|=( )ABC2D【答案】D【详解】解:z=2(1+i),所以|zi|=|2i|=.2已知集合. 则集合=ABCD【答案】C【详解】因为I=1,2,3,4,5,6,N=2,3,4,所以CIN=1,5,6,所以M(CIN)=1,6,故选C3在五场篮球比赛中,甲、乙两名运动员得分的茎叶图如图所示,下列说法正确的是( )A甲的平均得分比乙多,且甲比乙稳定B甲的平均得分比乙多,但乙比甲稳定C乙
2、的平均得分比甲多,且乙比甲稳定D乙的平均得分比甲多,但甲比乙稳定【答案】C【详解】由茎叶图可知,甲运动员的平均分为,方差为,乙运动员的平均得分为,方差为.因此,乙的平均得分比甲多,且乙比甲稳定.故选:C.4已知为锐角,且,则的值为( )ABCD或【答案】C【详解】由,又,则为锐角,故,则,故.5某种芯片的良品率服从正态分布,公司对科技改造团队的奖励方案如下:若芯片的良品率不超过,不予奖励;若芯片的良品率超过但不超过,每张芯片奖励元;若芯片的良品率超过,每张芯片奖励元.则每张芯片获得奖励的数学期望为( )元附:随机变量服从正态分布,则,.ABCD【答案】B【详解】因为,得出,所以,;,所以(元)
3、故选:B6函数的图象大致为( )ABCD【答案】D【详解】由可得,所以函数的定义域为,当时,所以,可得,故排除选项AC,当时,所以,可得,故排除选项B,7将函数的图象纵坐标不变,横坐标变为原来的两倍,再向右平移个单位长度,得到函数的图象在中,角的对边分别是,若,且,则的面积为( )A4B6C8D10【答案】C【详解】由已知条件可得:,由余弦定理得,整理得,得的面积为8故选:C8已知圆和,动圆M与圆,圆均相切,P是的内心,且,则a的值为( )A9B11C17D19【答案】C【详解】由圆和,可得圆的圆心,半径为,圆的圆心,半径为 由 所以圆与内含,由动圆M与圆,圆均相切.所以动圆M与圆内切,与圆外
4、切,设动圆M的半径为 则,所以所以动点M的轨迹是以为焦点,长轴为的椭圆,设其方程为 所以,设,则 由P是的内心,设的内切圆的半径为 由,有即,又由椭圆的定义可得所以,则9已知函数的部分图象如图所示,则下列说法正确的是( )AB不等式的解集为C函数的一个单调递减区间为D若将函数的图象向右平移个单位长度后所得图象对应的函数为,则是奇函数【答案】C【详解】由图易得,的最小正周期,所以,所以.由点在的图象上,得,即,又,所以取,得,所以,所以A错误;令,得,得,解得,即的解集为,所以B错误;由,得,取,得,所以的一个单调递减区间为,所以C正确;将函数的图象向右平移个单位长度后得的图象,所以是偶函数,所
5、以D错误.10已知双曲线的一条渐近线过点,则该双曲线的离心率为( )ABCD【答案】B【详解】解:由已知可得双曲线的一条渐近线方程为,又过点所以一条渐近线方程为,得,设b4t,a3t,(t0),则该双曲线的离心率是11如图,在正方体中,分别为棱,的中点,则与所成角的余弦值为( )ABCD【答案】A【详解】如图以为原点,分别以所在的直线为轴建立空间直角坐标系,设正方体的棱长为,则,所以,设与所成的角为,所以,与所成角的余弦值为,12已知是函数图像上的两个不同的点,且在两点处的切线互相垂直,则的取值范围为( )ABCD【答案】D【解析】因为f(x)=ln|x|,所以,x0时,f(x)=lnx,f(
6、x)=,x0时,f(x)=ln(x),f(x)=()=,即f(x)=,根据题意,函数图象在A,B两处的切线互相垂直,所以,f(x1)f(x2)= =1,即x1x2=1,且x1x2,所以x10x2,因此,=x1+2=2,所以,的取值范围为:2,+)二、填空题:本题共4小题,每小题5分,共20分。13已知单位向量,的夹角为,与垂直,则实数_.【答案】【详解】 ,是单位向量,与垂直,解得.14“e游小镇”某公司有A,B,C,D,E五幢独立的大楼,每两幢大楼的顶楼之间没有连接的天桥,现公司打算在这五幢楼的顶楼之间共建造3座天桥(每两幢楼的顶楼之间至多建造一座天桥),要使A楼的人员能够通过天桥走到B楼,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材数学 新高考数学 高三数学 数学专题 数学学案 数学设计 数学课件 数学精练 数学模拟 数学考点
限制150内