2021届江苏省南通市学基地高三上学期第一次联考数学试题(解析版).doc
《2021届江苏省南通市学基地高三上学期第一次联考数学试题(解析版).doc》由会员分享,可在线阅读,更多相关《2021届江苏省南通市学基地高三上学期第一次联考数学试题(解析版).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2021届江苏省南通市学基地高三上学期第一次联考数学试题一、单选题1已知UR,A,B,则(A)B( )A(1,2)B(,2C(2,4)D2,4)【答案】D【分析】化简集合A,根据补集、交集运算即可.【详解】因为A(2,2),所以A(,22,),因为B,所以(A)B2,4).故选:D2已知复数的共轭复数为,若,且,则( )ABCD【答案】B【分析】求得,可得出,结合可求得的值.【详解】,所以,因此,.故选:B.3已知,则a,b,c的大小关系是( )A B C D【答案】C【分析】化简,根据指数函数、对数函数的性质借助中间值0和1比较可得【详解】,所以.故选:C【点睛】方法点睛:比较指数式大小时
2、,常常化为同底数的幂,利用指数函数性质比较,或化为同指数的幂,利用幂函数性质比较,比较对数式大小,常常化为同底数的对数,利用对数函数性质比较,如果不能化为同底数或同指数,或不同类型的数常常借助中间值如0或1比较大小4命题“”为真命题的一个充分不必要条件是( )A BCD【答案】D【分析】先确定“”为真命题时的范围,进而找到对应选项.【详解】“”为真命题,可得,因为 ,故选:D.5有5名学生志愿者到2个小区参加疫情防控常态化宣传活动,每名学生只去1个小区,每个小区至少安排1名学生,则不同的安排方法为( )A种B种C种D种【答案】C【分析】先将5名学生分成两组,再分配即可求解.【详解】将5名学生分
3、成两组可以有两类,一组人,一组人,则有,一组人,一组人,则有,所以不同的安排方法为种,故选:C【点睛】关键点点睛:本题的关键点是先分组后分配,5名学生分成两组,即一组人,一组人和一组人,一组人,再分配即可.6函数的部分图象可能是( )ABCD【答案】B【分析】根据函数为奇函数,排除A;根据函数在只有一个零点,排除C;根据,排除D,即可求解.【详解】由,所以函数为奇函数,排除A;当时,令,解得,即函数在只有一个零点,排除C;是单调增函数,排除D.故选:B.7若双曲线:与双曲线:的渐近线相同,则双曲线的离心率为( )ABCD【答案】B【分析】先分别写出两双曲线的渐近线方程,根据渐近线相同列出等式,
4、求出,进而可求出离心率.【详解】因为双曲线:的渐近线方程为,双曲线:的渐近线方程为,又这两双曲线的渐近线相同,所以,解得,所以双曲线的离心率.故选:B.82013年9月7日,习近平总书记在哈萨克斯坦纳扎尔巴耶夫大学发表演讲并回答学生们提出的问题,在谈到环境保护问题时他指出:“我们既要绿水青山,也要金山银山.宁要绿水青山,不要金山银山,而且绿水青山就是金山银山.”“绿水青山就是金山银山”这一科学论断,成为树立生态文明观、引领中国走向绿色发展之路的理论之基.某市为了改善当地生态环境,2014年投入资金160万元,以后每年投入资金比上一年增加20万元,从2020年开始每年投入资金比上一年增加10%,
5、到2024年底该市生态环境建设投资总额大约为( )A2655万元B2970万元C3005万元D3040万元【答案】C【分析】根据年每年的投资额成等差数列、年每年的投资额成等比数列,利用等差和等比数列求和公式即可求得结果.【详解】年每年的投资额成等差数列,首项为,公差为,则年的投资总额为:(万元),年的投资额为:(万元)年每年的投资额成等比数列,首项为,公比为,则年的投资总额为:(万元);年的投资总额约为(万元)故选:C.92019年1月到2019年12月某地新能源汽车配套公共充电桩保有量如下:则下列说法正确的是( )A2019年各月公共充电桩保有量一直保持增长态势B2019年12月较2019年
6、11月公共充电桩保有量增加超过2万台C2019年6月到2019年7月,公共充电桩保有量增幅最大D2019年下半年各月公共充电桩保有量均突破45万台【答案】A【分析】根据题设的统计图表逐项判断即可.【详解】对于A,2019年各月公共充电桩保有量逐步增加,故一直保持增长态势,故A正确.对于B,2019年12月较2019年11月公共充电桩保有量增加量为:,故B错.对于C,2019年6月到2019年7月,公共充电桩保有量增幅约,而2019年2月到2019年3月,公共充电桩保有量增幅约,故C错误;2019年7月公共充电桩保有量小于45万台,故D错误.故选:A.二、多选题10设a,bR,则下列结论正确的是
7、( )A若ab0,则B若ab0,则C若ab2,则4D若,则ab【答案】AC【分析】由不等式的性质可得A正确,通过举反例可得BD错误,利用基本不等式可得C正确.【详解】选项A显然正确;选项B,a2,b1代入即可验证,不等式不成立,故B错误;选项C,当且仅当ab1时,取“”,故C正确;选项D,a1,b满足,不符合ab,故D错误.故选:AC11如图,在半圆柱中,AB为上底面直径,DC为下底面直径,AD,BC为母线,ABAD2,点F在上,点G在上,BFDG1,P为DC的中点.则( )ABFPGB异面直线AF与CG所成角为60C三棱锥PACG的体积为D直线AP与平面ADG所成角的正弦值为【答案】ABD【
8、分析】作出GC在上底面上的投影,找出空间角对应的平面角.【详解】取AB中点O,连接 FO,FBFOOB1,FBO60,设G在上底面的投影为E,连接BE、 AE、 EO、则EOGPAO=1,AOE60,所以BFEOGP,故A选项正确;由A选项知CGBE,直线AF、CG所成角等于BE与AF夹角,等于60,故B选项正确;,故C选项错误;取DG中点H,连接HP、 AH则易知sinPAH即为所求,故D选项正确.综上,选ABD.故选: ABD【点睛】关键点睛:求空间角关键在于找出空间角所对应的平面角.12已知函数,则下列结论正确的是( )A函数是周期函数B函数在,上有4个零点C函数的图象关于(,)对称D函
9、数的最大值为【答案】ACD【分析】由选项的问题逐一计算,A选项,代入周期的公式验证即可;B选项,求导求函数的单调性以及极值和端点值,从而判断函数的零点个数;C选项,代入,计算的值验证;D选项,由B选项可知结果.【详解】A:由于,所以函数是周期函数,A正确;B:,研究,情况,发现在(,),(,)单调递增,在(,)单调递减,求得,所以函数在,上有2个零点,故B错误;C:由于,所以,所以函数的图象关于(,)对称;D:由B选项的过程可知,的最大值为,D正确.故选:ACD.【点睛】本题考查含三角函数的复合型函数的周期性,零点个数以及对称性,属于中档题.易错点睛:(1)含三角函数的复合型函数求导时的解为增
10、区间;的解为减区间;不考虑三角函数本身的增减性.(2)正弦型、余弦型复合函数的单调性要看内外层函数的单调性.三、填空题13已知向量,且,则_.【答案】【分析】利用向量的坐标运算和垂直关系的坐标表示即可构造方程求得结果.【详解】,又,解得:.故答案为:.14设函数,则_.【答案】【分析】根据分段函数的解析式,结合分段条件,代入计算,即可求解.【详解】由题意,函数,可得,所以.故答案为:.15已知抛物线C: ,斜率为的直线l经过点 ,且与C交于A,B两点(其中A点在轴上方).若B点关于轴的对称点为P,则 外接圆的方程为_.【答案】【分析】依题意求出A、B、C三点的坐标,再设圆的一般方程可求解.【详
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材数学 新高考数学 高三数学 数学专题 数学学案 数学设计 数学课件 数学精练 数学模拟 数学考点
限制150内