【教学必备】人教版九年级数学上册教学案:244圆锥的侧面积.doc
《【教学必备】人教版九年级数学上册教学案:244圆锥的侧面积.doc》由会员分享,可在线阅读,更多相关《【教学必备】人教版九年级数学上册教学案:244圆锥的侧面积.doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、圆锥的侧面积教学目标(一)教学知识点1经历探索圆锥侧面积计算公式的过程2了解圆锥的侧面积计算公式,并会应用公式解决问题(二)能力训练要求1经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力2了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力(三)情感与价值观要求1让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验2通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际教学重点1经历探索圆锥
2、侧面积计算公式的过程2了解圆锥的侧面积计算公式,并会应用公式解决问题教学难点经历探索圆锥侧面积计算公式教学方法观察想象实践总结法教具准备一个圆锥模型(纸做)投影片两张第一张:(记作38A)第二张:(记作38B)教学过程创设问题情境,引入新课师大家见过圆锥吗?你能举出实例吗?主见过,如漏斗、蒙古包师你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流生圆锥的表面是由一个圆面和一个曲面围成的师圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题新课讲解一、探索圆锥的侧面展开图的形状师(向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状生圆锥的侧
3、面展开图是扇形师能说说理由吗?生甲因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形师这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?生乙我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型师很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?生是扇形师大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能
4、把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象二、探索圆锥的侧面积公式师圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底面圆的周长2r,根据扇形面积公式可知S2rlrl因此圆锥的侧面积为S侧rl圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S全r2rl三、利用圆锥的侧面积公式进行计算投影片(38A)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽已知纸帽的底面周长为58cm,高为20c
5、m,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长在高h、底面圆的半径r、母线l组成的直角三角形中,根据勾股定理求出母线l,代入S侧rl中即可解:设纸帽的底面半径为r cm,母线长为l cm,则rl22.03cm,S圆锥侧rl5822.03638.87cm2638.872012777.4cm2所以,至少需要12777.4cm2的纸投影片(38B)如图,已知RtABC的斜边AB13cm,一条直角边AC5cm,以直线AB为轴旋转一周得一个几何体求这个几何体的
6、表面积分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和根据S侧R2或S侧rl可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB垂直于底面圆,在RtABC中,由OC、ABBC、AC可求出r,问题就解决了解:在RtABC中,AB13cm,AC5cm,BC12cmOCABBCAC,rOCS表r(BCAC)(125) cm2课堂练习随堂练习课时小结本节课学习了如下内容:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算课后作业习题311活动与探究探索圆柱的侧面展开图在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已
7、知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的如图,把圆柱的侧面沿它的一条母线剪开,展在一个平面上,侧面的展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长,另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高例1如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD已知AD18cm,AB30cm,求这个圆柱形木块的表面积
8、(精确到1cm2)解:如图(2),AD是圆柱底面的直径,AB是圆柱的母线,设圆柱的表面积为S,则S2S圆S侧S2()22301625402204cm2所以这个圆柱形木块的表面积约为2204cm2板书设计38 圆锥的侧面积一、1探索圆锥的侧面展开图的形状;2探索圆锥的侧面积公式;3利用圆锥的侧面积公式进行计算二、课堂练习三、课时小结四、课后作业回顾与思考教学目标(一)教学知识点1掌握本章的知识结构图2探索圆及其相关结论3掌握并理解垂径定理4认识圆心角、弧、弦之间相等关系的定理5掌握圆心角和圆周角的关系定理(二)能力训练要求1通过探索圆及其相关结论的过程,发展学生的数学思考能力2用折叠、旋转的方法
9、探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力3用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力4让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力(三)情感与价值观要求通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系对这些内容不仅仅是知道结论,要注重它们的推导过程和运用教学难点上面这些内容的推导及应用教学方法教师引导学生自己归纳总结法教具准备投影片三张:第一张:(记作A)第二张:(记作D第三
10、张:(记作C)教学过程回顾本章内容师本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?生首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积师很好,大家对所学知识掌握得不错本章的内容可归纳为三大部分,第一部分由圆引出了圆的概念、对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对
11、称性方面又学习了垂径定理,圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线的作图;第三部分是圆和圆的位置关系这三部分构成了全章内容,结构如下:(投影片A)具体内容巩固师上面我们大致梳理了一下本章内容,现在我们具体地进行回顾一、圆的有关概念及性质生圆是平面上到定点的距离等于定长的所有点组成的图形定点为圆心,定长为半径圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性师圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?生车轮做成圆形的就是利用了圆的旋转不变性车轮在平坦的地面上行驶时,它与地面线相切,当
12、它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳如果车轮不是圆形,坐在车上的人会觉得非常颠二、垂径定理及其逆定理生垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧师这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分每个定理都是一个命题,每个命题都有条件和结论在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等)在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是
13、:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等)从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理下面我们就用一些具体例子来区别它们(投影片B)1如图(1),在O中,AB、AC为互相垂直的两条相等的弦,ODAB,OEAC,D、E为垂足,则四边形ADOE是正方形吗?请说明理由2如图(2),在O中,半径为50mm,有长50mm的弦AB,C为AB的中点,则OC垂 直于AB吗?OC的长度是多少?师在上面的两个题中,大家能
14、分析一下应该用垂径定理呢,还是用逆定理呢?生在第1题中,OD、OE都是过圆心的,又ODAB、OEAC,所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C是弦AB的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理师很好,在家能用这两个定理完成这两个题吗?生1解:ODAB,OEAC,ABAC,四边形ADOE是矩形ACAB,AEAD四边形ADOE是正方形2解:C为AB的中点,OCAB,在RtOAC中,ACAB25mm,OA50mm由勾股定理得OC(mm)三、圆心角、弧、弦之间关系定理师大家先回忆一下本部分内容生在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等在同圆或等圆中,如果两
15、个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等师下面我们进行有关练习(投影片C)1如图在O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长生解:由题意可知的度数为120,AOB120作OCAB,垂足为C,则AOC60,ACBC在RtABC中,ACOAsin602sin602AB2AC2(cm)四、圆心角与圆周角的关系生一条弧所对的圆周角等于它所对的圆心角的一半在同圆或等圆中,同弧或等弧所对的圆周角相等直径所对的圆周角是直角,90的圆周角所对的弦是直径五、弧长,扇形面积,圆锥的侧面积和全面积师我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公
16、式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用生弧长公式l,是圆心角,R为半径扇形面积公式S或SlRn为圆心角,R为扇形的半径,l为扇形弧长圆锥的侧面积S侧rl,其中l为圆锥的母线长,r为底面圆的半径S全S侧S底rlr2课时小结本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积课后作业复习题 A组活动与深究弓形面积如图,把扇形OAmB的面积以及OAB的面积计算出来,就可以得到弓形AmB的面积如图(1)中,弓形AmB的面积小于
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教学必备 教学 必备 人教版 九年级 数学 上册 244 圆锥 侧面
限制150内