《磁场中的临界极值问题.doc》由会员分享,可在线阅读,更多相关《磁场中的临界极值问题.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 带电粒子在磁场中运动的极值问题1.解决此类问题的关键是:找准临界点.2.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角大的,运动时间越长.1、 如图7所示, 匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF.一电子从CD边界外侧以速率
2、v0垂直匀强磁场射入,入射方向与CD边界间夹角为.已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?2、如图所示,环状匀强磁场围成的中空区域内具有自由运动的带电粒子,但由于环状磁场的束缚,只要速度不很大,都不会穿出磁场的外边缘,设环状磁场的内半径R1=0.5m,外半径R2=1.0m,磁场的磁感应强度B=1.0T,若被束缚的带电粒子的荷质比为4107C/kg,中空区域中带电粒子具有各个方向的速度。试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度;(2)所有粒子不能穿越磁场的最大速度。3、如图所示一足够长的矩形区域abcd内充满磁感应强度
3、为B,垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直磁场射入一速度方向与ad边夹角30,大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为l,重力影响不计。 abcdO30(1)试求粒子能从ab边上射出磁场的v0的大小范围。(2)粒子在磁场中运动的最长时间是多少?4、如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在03t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进
4、入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、t0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)(1)求电压U的大小。(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。5、如图所示,r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标O处相切,磁感应强度B=0.332T,方向垂直纸面向外,在O处有一放射源S,可沿纸面向各个方向射出速率均为v=3.2106m/s的粒子,已知ma=6.6410-27kg,q=3.210-19C,则粒子通过磁场最大偏转角等于多少?6、在真空中,半径r=310-
5、2m的圆形区域内有匀强磁场,方向如图所示,磁感强度B=0.2T,一个带正电的粒子,以初速度v0=106m/s从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷108C/kg,不计粒子重力,求:(1)粒子在磁场中作匀速圆周运动的半径是多少?(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0方向与ab的夹角及粒子的最大偏转角。7、M、N两极板相距为d,板长均为5d,两板未带电,板间有垂直纸面的匀强磁场,如图所示,一大群电子沿平行于板的方向从各处位置以速度v射入板间,为了使电子都不从板间穿出,求磁感应强度B的范围。8、如图所示一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域,为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感强度为B的匀强磁场,若此磁场仅分布在一圆形区域内,试求该圆形区域的最小半径(粒子重力不计)。9、一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从b处穿过x轴,速度方向与x轴正向夹角为30,如图所示(粒子重力忽略不计)。试求:圆形磁场区的最小面积;4
限制150内