人教版九年级数学第六单元《圆》中考知识点梳理.doc
《人教版九年级数学第六单元《圆》中考知识点梳理.doc》由会员分享,可在线阅读,更多相关《人教版九年级数学第六单元《圆》中考知识点梳理.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六单元圆中考知识点梳理第21讲 圆的基本性质一、 知识清单梳理知识点一:圆的有关概念 关键点拨与对应举例1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成 的图形如图所示的圆记做O.(2)弦与直径:连接圆上任意两点的线段叫做弦,过 圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1
2、点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.知识点二 :垂径定理及其推论2.垂径定理及其推论定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.延伸根据圆的对称性,如图所示,在以下五条结论中: 弧AC=弧BC;弧AD=弧BD;AE=BE;ABCD;CD是直径.只要满足其中两个,另外三个结论一定成立,即推二知三.知识点三 :圆心角、弧、弦的
3、关系3.圆心角、弧、弦的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等知识点四 :圆周角定理及其推论4.圆周角定理及其推论(1)定理:一条弧所对的圆周角等于它所对的圆心角的一半. 如图a,A=1/2O. 图a 图b 图c( 2 )推论: 在同圆或等圆中,同弧或等弧所对的圆周角相等.如图b,A=C. 直径所对的圆周角是直角.如图c,C=90. 圆内接四边形的对角互补.如图a,A+C=180,ABC+ADC=180.在圆中求角度时
4、,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.例:如图,AB是O的直径,C,D是O上两点,BAC=40,则D的度数为130第22讲 与圆有关的位置关系二、 知识清单梳理知识点一:与圆有关的位置关系 关键点拨及对应举例1.点与圆的位置关系设点到圆心的距离为d.(1)dr点在O外判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.例:已知:O的半径为2,圆心到直线l的距离为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 第六 单元 中考 知识点 梳理
限制150内