《高一数学对数函数说课稿.docx》由会员分享,可在线阅读,更多相关《高一数学对数函数说课稿.docx(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、对数函数的概念对数函数的图象对数函数的性质对数函数课题:对数函数一、教学目标:(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。二、教学重点、难点及关键重点:对数函数的概念、图象和性质;难点:利用指数函数的图象和性质得到对数函数的图象和性质;关键:抓住对数函数是指数函数的反函数这一要领。二、教法(1)启发引导学生思考、分析、实验、探索、归纳。(2)采用“从特殊到一般”、“从具体到抽象”的方法。(3)
2、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。(4)多媒体演示法。2014年各行业工程师考试备考资料及真题集锦三、学法:(1)对照比较学习法:学习对数函数处处与指数函数相对照。(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。四、教学过程1、复习导入(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍
3、,有意识地培养学生分析问题的能力。(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。2、认定目标(出示教学目标)3、导学达标按教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动(1)对数函数的概念引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a0且a1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a0且a1。从而引出对数函数的概念,展示课件。设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对
4、数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。(2)对数函数的图象提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利
5、用两种方法画对数函数的图象。方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x0,因此可取x=,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象.方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。设计意图:用这种对称变换的方法画函数的图象,可以加
6、深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。(3)对数函数的性质在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a1与0a1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”
7、的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。4、巩固达标(见课件)这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。5、反馈练习(见课件)习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。6、归纳总结(见课件)引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。7、课外作业:(1)完成P178A组1、2、3题(2)当底数a1与0a1时,底数不同,对数函数图象有什么持点?五、板书板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。
限制150内