第26章反比例函数导学案.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第26章反比例函数导学案.doc》由会员分享,可在线阅读,更多相关《第26章反比例函数导学案.doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十六章 反比例函数 26.1反比例函数(一)-反比例函数的意义学习目标:1理解并掌握反比例函数的概念2能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想4经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。5培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念学习时间:导学流程:一、忆一忆回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?二、议一议1体育课上
2、,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?2看教材P39页思考中的三个问题,三个函数的解析式分别是怎样的?3电流I、电阻R、电压U之间满足关系式U=IR,当U220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?归纳:反比例函数:如果两个变量x,y之间的关系可以表示成 的形式,那么y是x的反比例函数,其中x是自变量,反比例函数的自变量x的取值范围是 。三、练一练1一个矩形的面积为20,相邻的两条边长分别为xcm和ycm。那么变量y是变量x的函数
3、吗?为什么?2某村有耕地346.2公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?3y是x的反比例函数,下表给出了x与y的一些值:x-2-113y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。四、做一做1下列等式中,哪些是反比例函数(1) (2) (3)xy21 (4) (5) (6) (7)yx42当m取什么值时,函数是反比例函数?3已知函数yy1y2,y1与x成正比例,y2与x成反比例,且当x1时,y4;当x2时,y5(1) 求y与x的函数关系式(2) 当x2时,求函数y的值4苹果每千克x元,花10元钱可买y千克的
4、苹果,求出y与x之间的函数关系式。5若函数是反比例函数,求m。6矩形的面积为4,一条边的长为x,另一条边的长为y,求y与x的函数解析式。7已知y与x成反比例,且当x2时,y3,则y与x之间的函数关系式是 ,当x3时,y 8函数中自变量x的取值范围是 9已知函数yy1y2,y1与x1成正比例,y2与x成反比例,且当x1时,y0;当x4时,y9,求当x1时y的值。五、小结与反思:26.1反比例函数(二)-反比例函数的图像和性质学习目标:1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。4结合正比例函数ykx(k0)的
5、图象和性质,来帮助我们观察、分析及归纳,通过对比,能更好地理解和掌握所学的内容,体会数形结合的思想方法。5以积极探索的思想,逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质学习重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。学习难点:探索并掌握反比例函数的主要性质。学习时间:导学流程:一、忆一忆1一次函数ykxb(k、b是常数,k0)的图象是什么?其性质有哪些?正比例函数ykx(k0)呢?2画函数图象的方法是什么?其一般步骤有哪些?应注意什么?方法与步骤利用描点作图;列表: 取自变量x的哪些值? x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左
6、右均匀,对称地取值。描点: 依据什么(数据、方法)找点?连线: 在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。二、探一探探索活动1 画出反比例函数与的图象探索活动2 反比例函数与的图象有什么共同特征? 它们之间有什么关系?归纳反比例函数图象的特征及性质:(1)(2)(3)三、练一练1已知反比例函数,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2函数yaxa与(a0)在同一坐标系中的图象可能是( ) 3在平面直角坐标系内,过反比例函数(k0)的图象上的一点分别作x轴、y轴的垂线段,与x轴、y轴所围成的矩形面积是
7、6,求函数解析式。四、做一做1若函数与的图象交于第一、三象限,则m的取值范围是 2反比例函数,当x2时,y ;当x2时;y的取值范围是 ;当x2时;y的取值范围是 3 已知反比例函数,当时,y随x的增大而增大,求函数关系式。4已知反比例函数的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?5如图,过反比例函数(x0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AOC和BOD的面积分别是S1、S2,比较它们的大小,可得( )(A)S1S2 (B)S1S2 (C)S1S2 (D)大小关系不能确定6比较正比例函数和反比例函数的性质(填空并补充完整)正比
8、例函数反比例函数解析式图像位置k0,在k0,在k0,在k0,在增减性k0,k0,k0, k0,五、小结与反思: 26.1反比例函数(三)-反比例函数的图像和性质学习目标:1进一步理解和掌握反比例函数及其图象与性质2能灵活运用函数图象和性质解决一些较综合的问题3深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法4经历观察、分析,交流的过程,逐步提高从函数图象中感受其规律的能力。5提高观察、分析的能力和对图形的感知水平,从整体上领悟研究函数的一般要求。学习重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题学习难点:学会从图象上分析、解决问题,理解反比例函数的性质
9、。学习时间:导学流程:一、忆一忆1什么是反比例函数?2反比例函数的图象是什么?有什么性质?二、想一想1若点A(2,a)、B(1,b)、C(3,c)在反比例函数(k0)图象上,则a、b、c的大小关系怎样?分析:由k0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且12,故ba0;又C在第四象限,则c0,所以ba0c解:2 如图, 一次函数ykxb的图象与反比例函数的图象交于A(2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围分析:第(1)问因为A点在反比例函数的图象上,可先求出反
10、比例函数的解析式,又B点在反比例函数的图象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式第(2)问根据图象可得x的取值范围x2或0x1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。解:3已知变量y与x成反比例,且当x=2时y=9。写出y与x之间的函数解析式和自变量的取值范围。 4设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(),通过电流的强度为I(A)。(提示:U=IR)(1)已知一个汽车前灯的电阻为30 ,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的实际意义。(2)如果接上新灯泡的电阻大于30 ,那么与原来的相
11、比,汽车前灯的亮度将发生什么变化?通过4题的学习可作如下拓展:(1)电流、电阻、电压之间有何关系?(2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?(3) 前灯的亮度取决于哪个变量的大小?如何决定? 三、练一练1.当质量一定时,二氧化碳体积V与密度p成反比例。且V=5m3时,p=198kgm3(1)求p与V的函数关系式,并指出自变量的取值范围。(2)求V=9m3时,二氧化碳的密度。2、已知反比例函数y=k/x(k0)的图像经过点(4,3),求当x=6时,y的值。3、 已知y2与x+a(其中a为常数)成正比例关系,且图像过点A(0,4)、B(1,2),求y与x的函数关系式4、已知
12、一次函数y= -x+8和反比例函数y =(1)k满足什么条件时,这两个函数在同一直角坐标系中的图象有两个交点?(2)如果其中一个交点为(1,9),求另一个交点坐标。5已知反比例函数的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足2k1,若k为整数,求反比例函数的解析式6已知一次函数的图像与反比例函数的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是2 , 求(1)一次函数的解析式; (2)AOB的面积四、小结与反思:26.2实际问题与反比例函数(一)学习目标:1、能灵活运用反比例函数的知识解决实际问题。2、经历“实际问题建立模型拓展应用”的过程发展分析问题,解决问题的能力。
13、3经历观察、分析讨论法,交流的过程,逐步提高从实际问题中变量之间的关系,建立反比例函数模型的过程,认识反比例函数性质的应用方法。4、从现实情境中提出问题,提高“用数学”的意识。5、体验反比例函数是有效地描述现实世界的重要手段,体验数学的实用性,提高学数学的兴趣。学习重点:运用反比例函数的意义和性质解决实际问题。学习难点:从实际问题中寻找变量之间的关系,建立数学模型,教学时注意分析过程,渗透转化的数学思想。学习时间:导学流程:一、想一想1某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着路线铺了若干块木板,构筑成一条临时通道,从而顺利完成的任务的情境。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 26 反比例 函数 导学案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内