第2章 2.3.4 圆与圆的位置关系-【新教材】人教B版(2019)高中数学选择性必修第一册讲义.doc
《第2章 2.3.4 圆与圆的位置关系-【新教材】人教B版(2019)高中数学选择性必修第一册讲义.doc》由会员分享,可在线阅读,更多相关《第2章 2.3.4 圆与圆的位置关系-【新教材】人教B版(2019)高中数学选择性必修第一册讲义.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 2.3.4圆与圆的位置关系学 习 目 标核 心 素 养1掌握圆与圆的位置关系及判定方法(重点)2了解两圆相离、相交或相切时一些简单的几何性质的应用(重点)3掌握利用圆的对称性灵活解决问题的方法(难点)1通过学习圆与圆的位置关系,培养直观想象的核心素养2借助圆与圆的位置关系的判断,培养数学运算的核心素养奥运五环象征着什么?圆与圆的位置关系有哪些?1圆与圆的位置关系圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含2圆与圆的位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如表:位置关系外离外切相交内切内含图示d与r1、r2的关系dr1
2、r2dr1r2|r1r2|dr1r2d|r1r2|d|r1r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断一元二次方程思考:用代数法消元后若0成立,是否两圆相离?提示相离或内含1思考辨析(正确的打“”,错误的打“”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切()(2)如果两圆的圆心距小于两圆的半径之和,则两圆相交()(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程()答案(1)(2)(3)提示(1)错误,还可能是内切(2)错误,还需要大于两半径之差的绝对值(3)错误,在相交的情况才是2两圆x2y24x6y90和x2y212x6y1
3、90的位置关系是()A外离B外切C相交 D内切B两圆的圆心分别为(2,3),(6,3),半径分别为2,8所以两圆的圆心距d10,1028,即dr1r23两圆x2y2r2与(x2)2(y1)2r2(r0)外切,则r的值是()AB5C D2C两圆外切,圆心距d2r,解得r4已知两圆x2y24x6y100与x2y22x8y60相交于A,B两点,则直线AB的方程为 3xy20两圆的方程相减得6x2y40,即3xy20圆与圆位置关系的判定【例1】已知圆C1:x2y22mx4ym250,圆C2:x2y22x2mym230(1)当m为何值时,圆C1与圆C2外切?(2)当圆C1与圆C2内含时,求m的取值范围?
4、思路探究本题主要考查两圆的位置关系,关键将圆的方程表示为标准方程,然后再利用外切、内含的条件列出方程或不等式即可解对于圆C1与圆C2的方程,经配方后,有C1:(xm)2(y2)29C2:(x1)2(ym)24两圆的圆心C1(m,2),C2(1,m),半径r13,r22,且|C1C2|(1)若圆C1与圆C2相外切,则|C1C2|r1r2,即5解得m5或m2(2)若圆C1与圆C2内含,则0|C1C2|r2r1|1,即1解得2m11判断两圆的位置关系或利用两圆的位置关系求参数的取值范围问题有以下几个步骤:(1)化成圆的标准方程,写出圆心和半径;(2)计算两圆圆心的距离d;(3)通过d,r1r2,|r
5、1r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合2应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系1当实数k为何值时,两圆C1:x2y24x6y120,C2:x2y22x14yk0相交、相切?解将两圆的一般方程化为标准方程,C1:(x2)2(y3)21,C2:(x1)2(y7)250k圆C1的圆心为C1(2,3),半径r11;圆C2的圆心为C2(1,7),半径r2(k50)从而|C1C2|5当15,k34时,两圆外切当|1|5,6,k14时,两圆内切当|r2r1|C1C2|r2r1,即14k34时,两圆相交两圆相交的有关
6、问题【例2】已知圆C1:x2y210x10y0和圆C2:x2y26x2y400相交于A,B两点,求弦AB的长思路探究本题主要考查两圆的相交弦问题,关键是要寻找关于弦AB的相交量由于两圆方程已知,可先求A,B的坐标,再求弦长,也可转化为直线AB与圆C1或圆C2的相交问题解法一:两圆方程相减得4x3y100,此即为两圆相交弦所在直线AB的方程由解得或A,B的坐标分别为(2,6),(4,2)|AB|10即弦AB的长为10法二:由解法一得直线AB为4x3y100圆心C1(5,5)到直线AB的距离为d5,而圆C1的半径为r5由圆的性质可知|AB|2210即弦AB的长为101求两圆的公共弦所在直线的方程的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材数学 新高考数学 高三数学 数学专题 数学学案 数学设计 数学课件 数学精练 数学模拟 数学考点
链接地址:https://www.taowenge.com/p-4158926.html
限制150内