人教版九年级数学下册26.1.1《反比例函数》导学案.doc
《人教版九年级数学下册26.1.1《反比例函数》导学案.doc》由会员分享,可在线阅读,更多相关《人教版九年级数学下册26.1.1《反比例函数》导学案.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二十六章 反比例函数26.1 反比例函数26.1.1 反比例函数学习目标:1. 理解并掌握反比例函数的概念. (重点)2. 从实际问题中抽象出反比例函数的概念,能根据已知条件确定反比例函数的解析式. (重点、难点)自主学习一、知识链接下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.(1) 京沪线铁路全程为1463 km,某次列车的平均速度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪,草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;(3) 已知北京市的总面积为1.6
2、8104 km2 ,人均占有面积 S (km2/人) 随全市总人口 n (单位:人) 的变化而变化.合作探究1、 要点探究探究点1:反比例函数的概念问题:观察以上三个解析式,你觉得它们有什么共同特点?【要点归纳】一般地,形如 (k为常数,k 0) 的函数,叫做反比例函数,其中 x 是自变量,y 是函数.思考1:反比例函数(k0) 的自变量 x 的取值范围是什么?思考2:反比例函数除了可以用(k 0) 的形式表示,还有没有其他表达方式?【要点归纳】反比例函数有三种表达方式:(k 0);(k 0);xy=k(k 0).【针对训练】下列函数是不是反比例函数?若是,请指出 k 的值.y=3x-1;.【
3、典例精析】例1 已知函数是反比例函数,求 m 的值.【方法总结】已知某个函数为反比例函数,只需要根据反比例函数的 x 的次数为1,且系数不等于0.【针对训练】1. 当m= 时,是反比例函数.2. 已知函数是反比例函数,则k 必须满足 .探究点2:确定反比例函数的解析式例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.(1) 写出 y 关于 x 的函数解析式;(2) 当 x=4 时,求 y 的值.【方法总结】用待定系数法求反比例函数解析式的一般步骤:设出含有待定系数的反比例函数解析式,将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;解方程,求出待定系数; 写出
4、反比例函数解析式.【针对训练】已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值 探究点3:建立简单的反比例函数模型例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50 km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100 km/h 时,视野的度数.例4 如图,已知菱形 ABCD 的面积为180平方厘米,设它的两条对角线 AC,BD的长
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例函数 人教版 九年级 数学 下册 26.1 反比例 函数 导学案
限制150内