22二次函数的图像和性质.doc
《22二次函数的图像和性质.doc》由会员分享,可在线阅读,更多相关《22二次函数的图像和性质.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中数学教学设计课题二次函数的图像和性质1课型授新主备人刘贵廷教学目标1能够利用描点法画函数的图象,能根据图象认识和理解二次函数的性质2猜想并能作出的图象,能比较它与的图象的异同3历探索二次函数的图象的作法和性质的过程,获得利用图象研究函数性质的经验4由函数的图象及性质,对比地学习的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维教学重难点教学重点:作出函数的图象,并根据图象认识和理解二次函数的性质.教学难点:由的图象及性质对比地学习的图象及性质,并能比较出它们的异同点.教学课时一课时教学过程1、作函数的图象师一次函数的图象是一条直线.二次函数的图象是什么形状
2、呢?让我们先看最简单的二次函数.大家还记得画函数图象的一般步骤吗?生记得. 列表,描点,连线.师非常正确,下面就请同学们跟我按上面的步骤作出的图象.(1)列表:x-3-2-10123y94101Oyx49(2)在直角坐标系中描点.(3)用光滑的曲线连结各点,便得到函数图象.师同学们有没有什么疑惑?生老师,为什么要用光滑的曲线来连接各点呢?在作一次函数图象时我们都是直接用直线来连接各点的,我这里画出的是折线图,难道不对吗?师这个问题提得好.二次函数图象是到底用直线连接还是用光滑的曲线来连接更为合理呢?不知同学们考虑这个问题没有:列表时我们取的点都是整数点,在整数点之间还有许多小数的点并未取,如自
3、变量1与2之间还有无数个小数,假设我们把点取得更多一些我们就能看出二次函数图象的真正面貌了.不妨取20个点试试,再取50个点试试.生老师,我明白了,取的点足够多时我们就能看出其本来面貌的.2、议一议对于二次函数的图象,(1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当时,随着值的增大,的值如何变化?当时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.生(1)图象的形状是一条曲线,就像抛出的物体所进行的路线的倒影.(2)图象与x轴有交点,
4、交于原点,交点坐标就是(0,0).(3)当时,图象在y轴的左侧随着值的增大,y的值逐渐减小;当时,图象在y轴的右侧,随着x值的增大,y的值逐渐增大.(4)观察图象可知,当x=0时,y的值最小,最小值为0.(5)观察图象是轴对称图形,它的对称轴是轴,从刚才的列表中可找到对应点(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9).师大家分析判断能力很棒,下面我们系统地总结一下.3、的图象的性质师二次函数,它的开口_,且关于_对称.对称轴与抛物线的交点是抛物线的_,它是图象的_.同学们在补充一下:生(1)最低点坐标是(0,0).(2)在对称轴的左侧,y随x的增大而减小;在对称
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22 二次 函数 图像 性质
限制150内