反比例函数的神奇.docx
《反比例函数的神奇.docx》由会员分享,可在线阅读,更多相关《反比例函数的神奇.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 让我们一起领略反比例函数的神奇一、个人对反比例函数的几点困惑与感悟1.为何正比例函数的比例系数是比,而反比例函数的比例系数却不是比?2.为何我市中考的反比例函数问题总不像其它函数那么深入?只探究一些皮毛问题!至多探究一下的几何意义(面积),例如2016年台州市中考考查的也是“函数的研究通法”,并非专门深入研究反比例函数.3.过去我们遇到稍难一点的反比例函数问题,就只有“暴力设元”这一途径,总无法避开多元方程、分式方程、高次方程.4.个人认为作为老师,不应该只应付中考,而应该研究更纯粹的数学,站在更高的位置来了解数学本质!做到居高临下、解有依据!5.实际上,反比例函数中也存在很多的“比”,斜比
2、、直比(纵比、横比、纵横比)、面积比,可以说“比比皆是”!现在就让我们一起来比出精彩、比出神奇. 二、一道曾经困惑我多时的中考题某年宁波市中考的填空压轴题: 如图,的顶点(,),双曲线经过点、,当以、为顶点的三角形与的相似时,则 .1.常规性解法: 通过设元,例如设(,),则(,),再根据条件列方程: (1)利用、或列方程; (2)利用列方程; (3)利用“一线三等角”模型、和列方程. 实际上,在上述常规处理方法中,已经透着一点智慧、一点灵性了,具体操作方法中也具备了一定的技巧性. 但我本人对此,却一直难言满意,耿耿于怀! 2.挖掘隐含性质,巧解此题 (1)实际上,此图中含有一些很重要的性质:
3、 过点作轴于,连接,直线分别交坐标轴于点、. 则有; ,; ,. 基于以上这些性质,有如下解法. (2)我的第一种解法(整体思想): 由,可得,即,于是, (3)我一个同事的解法(斜边转直比): 由,可得,转为横比,因此, (4)我一个学生的解法(斜等转直等): 由得,则, (5)我的第二种解法(平行导角度): 由得,于是, (6)下面我们要着重解决两件事: 上述性质是否永远成立?如何证明? 解题技巧除上述方法:整体思想、斜边转直比、斜等转直等、平行导角度外,还有斜长转直长、面积比与边比互转、纯面积转化等等,后面将一、一介绍.三、探究性质1.如图,双曲线与矩形边交于点、,直线交坐标轴于点、.如
4、图1,若,则 ;如图2,若,则 ;如图3,若,则 ,直线与的位置关系是 ,与的大小关系 . 图1 图2 图32.如图1,双曲线与直线交于点、,轴于点,轴于 点,请探究直线与的位置关系,线段与的大小关系.如图2,双曲线与直线交于点、,轴于,轴于,轴于,轴于,请探究直线与、的位置关系,以及线段与的大小关系.图1 图2四、最常见思想方法(斜转直):斜边转直比、斜等转直等、斜长转直长1.如图,直线反比例函数()图象交直线于点、,且, 则的值为 . (1)常规方法(斜长转直长):,则,可设(,),则(,),列方程解决; (2)口算巧解(斜边转直比): 由,得,转为横比得,则, 2.同类变式题:如图,直线
5、交坐标轴于点、,双曲线交直线于点、.若,则的值为 ;3.难题展示(中国数学教育名师讲堂481230254,每日一题第8题,2017/3/29) 如图,点(,),在双曲线上,分别交,轴于, 分别交,轴于,. (1)求的面积; (2)求证:.4.原创清新小题和近年的中考题: (1)如图1,的面积为,则的值为 . (2)如图2,点,在双曲线上运动,轴,.在运动过程中,的面积是不是定值?答: ;若,且是正三角形,则点的坐标为 . (3)如图3,中,双曲线经过点和中点,则该双曲线的解析式为 . (4)如图4,直线与分别与双曲线交于点、, 则的值为 .图1 图2 图3 图4(5)(十堰)如图5,正的边长为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材数学 中考数学 初三数学 数学专题 数学学案 数学设计 数学课件 数学精练 数学模拟 数学考点 数学技法
限制150内