2009年中考数学分类汇编专题测试(20)压轴题2doc--初中数学 .doc
《2009年中考数学分类汇编专题测试(20)压轴题2doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《2009年中考数学分类汇编专题测试(20)压轴题2doc--初中数学 .doc(84页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2009年中考数学分类汇编专题测试压轴题21. (2008年江苏省苏州市)如图,抛物线与轴的交点为直线与轴交于,与轴交于若两点在直线上,且,为线段的中点,为斜边上的高DxyNOMPACBH(1)的长度等于 ; , (2)是否存在实数,使得抛物线上有一点,满足以为顶点的三角形与相似?若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的点(简要说明理由);并进一步探索对符合条件的每一个点,直线与直线的交点是否总满足,写出探索过程2.(2008年江苏省连云港市)我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆例如线段的
2、最小覆盖圆就是以线段为直径的圆AABBCC(1)请分别作出图1中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);(3)某地有四个村庄(其位置如图2所示),现拟建一个电视信号中转站,为了使这四个村庄的居民都能接收到电视信号,且使中转站所需发射功率最小(距离越小,所需功率越小),此中转站应建在何处?请说明理由GHEF3.2008年吉林省长春市)已知两个关于的二次函数与当时,;且二次函数的图象的对称轴是直线(1)求的值;(2)求函数的表达式;(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由
3、4.(2008湖北咸宁)如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒(1) 当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2) 求正方形边长及顶点C的坐标;(第24题图)(3) 在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标(1) 附加题:(如果有时间,还可以继续解答下面问题,祝你成功!)如果点P、Q保持原速
4、度速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由5.(2008湖北鄂州)(1)如图13,是抛物线图象上的三点,若三点的横坐标从左至右依次为1,2,3求的面积(2)若将(1)问中的抛物线改为和,其他条件不变,请分别直接写出两种情况下的面积(3)现有一抛物线组:;依据变化规律,请你写出抛物线组第个式子的函数解析式;现在轴上有三点经过向轴作垂线,分别交抛物线组于;记为,为,为,试求的值(4)在(3)问条件下,当时有的值不小于,请探求此条件下正整数是否存在最大值,若存在,请求出此值;若不存在,请说明理由1yxO23ABC图136(2008安
5、徽)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发赶往30千米外的镇;二分队因疲劳可在营地休息小时再赶往镇参加救灾一分队出发后得知,唯一通往镇的道路在离营地10千米处发生塌方,塌方处地形复杂,必须由一分队用1小时打通道路已知一分队的行进速度为5千米/时,二分队的行进速度为千米/时(1)若二分队在营地不休息,问二分队几个小时能赶到镇?(2)若需要二分队和一分队同时赶到镇,二分队应在营地休息几个小时?(3)下列图象中,分别描述一分队和二分队离镇的距离(千米)和时间(小时)的函数关系,请写出你认为所有可能合理图象的代号,并说明它们的实际意义xyO(a)xyO(b)xyO(c)xyO(d)7.(
6、2008年云南省双柏县)已知:抛物线yax2bxc与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OBOC)是方程x210x160的两个根,且抛物线的对称轴是直线x2(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EFAC交BC于点F,连接CE,设AE的长为m,CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时BCE的形状
7、;若不存在,请说明理由8.(2008年浙江省嘉兴市)如图,直角坐标系中,已知两点,点在第一象限且为正三角形,的外接圆交轴的正半轴于点,过点的圆的切线交轴于点(1)求两点的坐标;(2)求直线的函数解析式;(3)设分别是线段上的两个动点,且平分四边形的周长试探究:的最大面积?9.(2008年山东省枣庄市)把一副三角板如图甲放置,其中,斜边,把三角板DCE绕点C顺时针旋转15得到D1CE1(如图乙)这时AB与CD1相交于点,与D1E1相交于点F(1)求的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点顺时针再旋转30得D2CE2,这时点B在D2CE2的内部、外部、还是边上?说明理由(甲
8、)ACEDBB(乙)AE11CD11OF10(2008湖南郴州)如图10,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为F FE与DC的延长线相交于点G,连结DE,DF(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由(3)设BEx,DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? 图1011(2008江苏南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h)
9、,两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图像进行以下探究:信息读取第28题(1)甲、乙两地之间的距离为 km;(2)请解释图中点B的实际意义;图像理解(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?12.(2008山东济南)已知:抛物线y=ax2bxc(a0),顶点C(1,3),与x轴交于A、B两点,A(1,0).(1)求这条抛物线的解析式.(2)如
10、图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PMAE于M,PNDB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由.(3)在(2)的条件下,若点S是线段EP上一点,过点S作FGEP,FG分别与边AE、BE相交于点F,G(F与A、E不重合,G与E、B不重合),请判断是否成立.若成立,请给出证明;若不成立,请说明理由.13(2008湖北黄石)如图,已知抛物线与轴交于点,与轴交于点(1)求抛物线的解析式及其顶点的坐标;(2)设直线交轴于点在线段的垂直平分线上是否存在点,使得点到直线的距
11、离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;(3)过点作轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?ABCOxy14(2008江苏宿迁)如图,的半径为,正方形顶点坐标为,顶点在上运动(1)当点运动到与点、在同一条直线上时,试证明直线与相切;(2)当直线与相切时,求所在直线对应的函数关系式;(3)设点的横坐标为,正方形的面积为,求与之间的函数关系式,并求出的最大值与最小值15. (2008 河南)如图,直线y=和x轴、y轴的交点分别为B,C。点A的坐标是(2,0)(1)
12、试说明ABC是等腰三角形;(2) 动点M从点A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度,当其中一个动点到达终点时,它们都停止运动,设点运动t秒时,MON的面积为s。 求s与t的函数关系式; 当点M在线段OB上运动时,是否存在s=4的情形?若存在,求出对应的t值;若不存在,说明理由; 在运动过程中,当MON为直角三角形时,求t的值。16.(2008 四川 泸州)如图11,已知二次函数的图像经过三点A,B,C,它的顶点为M,又正比例函数的图像于二次函数相交于两点D、E,且P是线段DE的中点。求该二次函数的解析式,并求函数顶点M的坐标;已知点E,
13、且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量的取值范围;当时,求四边形PCMB的面积的最小值。【参考公式:已知两点,则线段DE的中点坐标为】17.(2008湖北十堰)已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;当点C在以AB为直径的P上时,求抛物线的解析式;坐标平面内是否存在点,使得以点M和中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由 18. (2008四川广安)如图,已知抛物线经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式(
14、2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示)(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由xOPNMBAyy=xx=m19.(2008 河北)如图,在中,分别是的中点点从点出发沿折线以每秒7个单位长的速度匀速运动;点从点出发沿方向以每秒4个单位长的速度匀速运动,过点作射线,交折线于点点同时出发,当点绕行一周回到点时停止运动,点也随之停止设点运动的时间是秒()(1)两点间的距离是 ;(2)射线能否把四边形分成面积相等的
15、两部分?若能,求出的值若不能,说明理由;(3)当点运动到折线上,且点又恰好落在射线上时,求的值;(4)连结,当时,请直接写出的值AECDFGBQKP20.(2008 湖南 怀化)如图13,在平面直角坐标系中,圆M经过原点O,且与轴、轴分别相交于两点(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于轴且经过点M,顶点C在M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得?若存在,请求出点P的坐标;若不存在,请说明理由21. (2008 重庆)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的
16、坐标为(4,0)。(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ。当CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)。问:是否存在这样的直线,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。22.(2008 湖北 荆门)已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=4ac (1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并
17、求出此时圆的圆心点P的坐标;(3) 根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?OxyAB 23.(2008 湖北 恩施) 如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,BAC=AGF=90,它们的斜边长为2,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围. (3)以ABC的斜边BC所在的直线为x轴,BC边上的
18、高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BDCE=DE. (4)在旋转过程中,(3)中的等量关系BDCE=DE是否始终成立,若成立,请证明,若不成立,请说明理由. G图1FEDCBAGyx图2OFEDCBA24. (2008 湖南 长沙)如图,六边形ABCDEF内接于半径为r(常数)的O,其中AD为直径,且AB=CD=DE=FA.(1)当BAD=75时,求的长;(2)求证:BCADFE;ABCDEFO(3)设AB=,求六边形ABCDEF的周长L关于的函数关系式,并指出为何值时,L取得最大值.25.( 2008 江西)如图
19、1,正方形和正三角形的边长都为1,点分别在线段上滑动,设点到的距离为,到的距离为,记为(当点分别与重合时,记)(1)当时(如图2所示),求的值(结果保留根号);(2)当为何值时,点落在对角线上?请说出你的理由,并求出此时的值(结果保留根号);(3)请你补充完成下表(精确到0.01):0.0300.290.290.130.03(4)若将“点分别在线段上滑动”改为“点分别在正方形边上滑动”当滑动一周时,请使用(3)的结果,在图4中描出部分点后,勾画出点运动所形成的大致图形AHFDGCBE图1图2B(E)A(F)DCGHADCB图3HHDACB图4(参考数据:)26(08莆田市)如图:抛物线经过A(
20、-3,0)、B(0,4)、C(4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。(注:抛物线的对称轴为)27(08乌兰察布市)两个直角边为6的全等的等腰直角三角形和,按如图一所示的位置放置,点与重合(1)固定不动,沿轴以每秒2个单位长度的速度向右运动,当点运动到与点重合时停止,
21、设运动秒后,和的重叠部分面积为,求与之间的函数关系式;(2)当以(1)中的速度和方向运动,运动时间秒时, 运动到如图二所示的位置,若抛物线过点,求抛物线的解析式;(3)现有一动点在(2)中的抛物线上运动,试问点在运动过程中是否存在点到轴或轴的距离为2的情况,若存在,请求出点的坐标;若不存在,请说明理由28(08绵阳市)如图,矩形ABCD中,AB = 8,BC = 10,点P在矩形的边DC上由D向C运动沿直线AP翻折ADP,形成如下四种情形设DP = x,ADP和矩形重叠部分(阴影)的面积为y(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;(2)如图乙,当点P运动到何处时,翻折ADP后
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2009年中考数学分类汇编专题测试20压轴题2doc-初中数学 2009 年中 数学 分类 汇编 专题 测试 20 压轴 doc 初中
限制150内