2009届高三第二轮数学专题复习教案集合与简易逻辑doc--高中数学 .doc
《2009届高三第二轮数学专题复习教案集合与简易逻辑doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2009届高三第二轮数学专题复习教案集合与简易逻辑doc--高中数学 .doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2009届高三数学二轮专题复习教案集合与简易逻辑一、本章知识结构:二、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。三、经典例题剖析考点1、集合的概念1、集合的概念:(1) 集合中元素特征,确定性,互异性,无序性;(2) 集合的分类
2、: 按元素个数分:有限集,无限集; 按元素特征分;数集,点集。如数集y|y=x2,表示非负实数集,点集(x,y)|y=x2表示开口向上,以y轴为对称轴的抛物线;(3) 集合的表示法: 列举法:用来表示有限集或具有显著规律的无限集,如N+=0,1,2,3,;描述法。2、两类关系:(1) 元素与集合的关系,用或表示; (2)集合与集合的关系,用,=表示,当AB时,称A是B的子集;当AB时,称A是B的真子集。3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合x|xP,要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直
3、观地解决问题 4、注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A两种可能,此时应分类讨论 例1、下面四个命题正确的是(A)10以内的质数集合是1,3,5,7(B)方程x24x40的解集是2,2(C)0与0表示同一个集合(D)由1,2,3组成的集合可表示为1,2,3或3,2,1解:选(D),最小的质数是2,不是1,故(A)错;由集合的定义可知(B)(C)都错。例2、已知集合A1,3,21,集合B3,若BA,则实数 解:由BA,且不可能等于1,可知21,解得:1。考点2、集合的运算1、交,并,补,定义:AB=x|xA且xB,AB=x|xA,或xB,CU
4、A=x|xU,且xA,集合U表示全集;2、运算律,如A(BC)=(AB)(AC),CU(AB)=(CUA)(CUB),CU(AB)=(CUA)(CUB)等。3、学会画Venn图,并会用Venn图来解决问题。例3、设集合Ax|2x13,Bx|3x2,则AB等于( )图1(A) x|3x1(B) x|1x2 (C)x|x3 (D) x|x1解:集合Ax|2x13x|x1,集合A和集合B在数轴上表示如图1所示,AB是指集合A和集合B的公共部分,故选(A)。图2例4、经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭
5、数为 ( ) A. 60 B. 70 C. 80 D. 90解:画出Venn图,如图2,画图可得到有一种物品的家庭数为:15+20+45=80.故选(C)。例5、(2008广东卷)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A=参加北京奥运会比赛的运动员,集合B=参加北京奥运会比赛的男运动员。集合C=参加北京奥运会比赛的女运动员,则下列关系正确的是()A.AB B.BC C.AB=C D.BC=A解:由题意可知,应选(D)。考点3、逻辑联结词与四种命题1、命题分类:真命题与假命题,简单命题与复合命题;2、复合命题的形式:p且q,p或q,非p;3、复合命题的真假:对p且q
6、而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。4、四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p“,逆否命题为”若非q则非p“。其中互为逆否的两个命题同真假,即等价。因此,四种命题为真的个数只能是偶数个。例6、(2008广东高考)命题“若函数在其定义域内是减函数,则”的逆否命题是( )A、若,则函数在其定义域内不是减函数B、若,则函数在其定义域内不是减函数C、若,则函数在其定义域内是减函数D、若,则函数在其定义域内是减函数解:逆否
7、命题是将原命题的结论的否定作为条件,原命题的条件的否定作为结论,故应选(A)。例7、已知命题方程有两个不相等的负数根;方程无实根若“或”为真,“且”为假,求实数的取值范围解:,或为真,且为假,真,假或假,真或,故或考点4、全称量词与存在量词1全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“”表示。(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“”表示。2全称命题与特称命题(1)全称命题:含有全称量词的命题。“对xM,有p(x)成立”简记成“xM,p
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2009届高三第二轮数学专题复习教案集合与简易逻辑doc-高中数学 2009 届高三第 二轮 数学 专题 复习 教案 集合 简易 逻辑 doc 高中数学
限制150内