2010届大纲版数学高考名师一轮复习教案8.5直线 圆锥曲线的综合应用 microsoft word 文档doc--高中数学 .doc
《2010届大纲版数学高考名师一轮复习教案8.5直线 圆锥曲线的综合应用 microsoft word 文档doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010届大纲版数学高考名师一轮复习教案8.5直线 圆锥曲线的综合应用 microsoft word 文档doc--高中数学 .doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网85 圆锥曲线综合应用一、明确复习目标1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程 2掌握双曲线的定义、标准方程和双曲线的简单几何性质3掌握抛物线的定义、标准方程和抛物线的简单几何性质 4了解圆锥曲线的初步应用,掌握处理圆锥曲线综合问题的常用方法二建构知识网络解析几何是以数来研究形的学科,就是数形结合的学科;解析法就是通过坐标、方程所反映的数量间的关系和特征,来研究图形的几何性质。圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题;有圆锥曲线科内综合,还有与代数、三角、几何、向量等学科间的综合。复习中应注意掌握解析几
2、何的常用方法,如求曲线方程的方法、研究位置关系的方法、求范围与最值的方法等,通过问题的解决,进一步培养函数与方程、等价转化、分类讨论等数学思想。三、双基题目练练手1(2005北京)设,“”是“曲线为椭圆”的( )A充分非必要条件 B必要非充分条件C充分必要条件 D既非充分又非必要条件2已知双曲线的两个焦点是椭圆的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是 ( )ABCD3(2006江苏)已知两点M(2,0)、N(2,0),点P为坐标平面内的动点,满足0,则动点P(x,y)的轨迹方程为()(A)(B)(C)(D)4(2006江西)为双曲线的右支上一点,、分别是圆上的点,则的
3、最大值为()A6B7C8D95(2005山东)设直线关于原点对称的直线为,若与椭圆的交点为A、B,点为椭圆上的动点,则使的面积为的点的个数为_6 直线l过点M(1,1),与椭圆+=1相交于A、B两点,若AB的中点为M,则直线l的方程是_简答:1-BCBD;设左焦点为F1,右焦点为F2,由双曲线定义和三角形边的关系得:,选D; +=1, +=1相减得=又M为AB中点,x1+x2=2,y1+y2=2直线l的斜率为得直线l的方程为3x+4y7=0四、经典例题做一做【例1】(2006福建) 已知椭圆的左焦点为F,O为坐标原点。(I)求过点O、F,并且与椭圆的左准线相切的圆的方程;(II)设过点F且不与
4、坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围。解:(I)圆过点O、F,圆心M在直线上。设则圆半径xylGABFO由得解得所求圆的方程为(II)设直线AB的方程为代入整理得直线AB过椭圆的左焦点F,方程有两个不等实根。记中点则的垂直平分线NG的方程为令得点G横坐标的取值范围为【例2】(2006天津)如图,以椭圆的中心为圆心,分别以和为半径作大圆和小圆。过椭圆右焦点作垂直于轴的直线交大圆于第一象限内的点连结交小圆于点设直线是小圆的切线(1)证明,并求直线与轴的交点的坐标;(2)设直线交椭圆于、两点,证明()证明:由题设条件知,故 ,即因此, 解:在中
5、 于是,直线OA的斜率设直线BF的斜率为,则 这时,直线BF与轴的交点为()证明:由(),得直线BF得方程为且 由已知,设、,则它们的坐标满足方程组 由方程组消去,并整理得 由式、和, 由方程组消去,并整理得 由式和, 综上,得到注意到,得 【例3】A、B、C是我方三个炮兵阵地,A在B正东6 km,C在B正北偏西30,相距4 km,P为敌炮阵地,某时刻A处发现敌炮阵地的某种信号,由于B、C两地比A距P地远,因此4 s后,B、C才同时发现这一信号,此信号的传播速度为1 km/s,A若炮击P地,求炮击的方位角解:如下图,以直线BA为x轴,线段BA的中垂线为y轴建立坐标系,则PCyxABD OB(3
6、,0)、A(3,0)、C(5,2)因为|PB|=|PC|,所以点P在线段BC的垂直平分线上因为kBC=,BC中点D(4,),所以直线PD的方程为y=(x+4) 又|PB|PA|=4,故P在以A、B为焦点的双曲线右支上设P(x,y),则双曲线方程为=1(x0) 联立,得x=8,y=5,所以P(8,5)因此kPA=故炮击的方位角为北偏东30 【例4】 (2006春上海) 学校科技小组在计算机上模拟航天器变轨返回试验 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、 为顶点的抛物线的实线部分,降落点为 观测点同时跟踪航天器(1
7、)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在轴上方时,观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?解(1)设曲线方程为, 由题意可知, 曲线方程为 (2)设变轨点为,根据题意可知 得 , 或(不合题意,舍去) 得 或(不合题意,舍去) 点的坐标为, 答:当观测点测得距离分别为时,应向航天器发出变轨指令【研讨欣赏】(2006重庆)已知一列椭圆,。若椭圆上有一点,使到右准线的距离是与的等差中项,其中、分别是的左、右焦点。()试证:;()取,并用表示的面积,试证:且证:(I)由题设及椭圆的几何性质有,故。设,则右准线方程为因此,由题意应满足即解之得:。即,从而对
8、任意(II)设点的坐标为,则由及椭圆方程易知。因,故的面积为,从而。令。由,得两根从而易知函数在内是增函数。而在内是减函数。 现在由题设取则是增数列。又易知。故由前已证,知,且。说明:如果建立Sn与n的函数,讨论单调性比较复杂.五提炼总结以为师1解决圆锥曲线的综合问题应根据曲线的几何特征,熟练运用圆锥曲线的知识将曲线的几何特征转化为数量关系,再结合代数等知识来解。2对于求曲线方程中参数范围或最值问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解,还有法,几何法,向量法等3 解决圆锥曲线应用问题时,要善于抓住问题的
9、实质,通过建立数学模型,实现应用性问题向数学问题的顺利转化;要注意认真分析数量间的关系,紧扣圆锥曲线概念,充分利用曲线的几何性质,确定正确的问题解决途径,灵活运用解析几何的常用数学方法,求得最终完整的解答四点重视:重视定义在解题中的作用;重视平面几何知识在解题中的简化功能;重视根与系数关系在解题中的作用;重视曲线的几何特征与方程的代数特征的统一注意用好以下数学思想、方法:数形结合思想;方程与函数思想;化归转化思想;分类讨论思想;对称思想;主元与参数思想此外,整体思想、正难则反思想、构造思想等也是解析几何解题中不可缺少的思想方法在复习中必须给予足够的重视,真正发挥其联系知识、简化计算、提高能力中
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010届大纲版数学高考名师一轮复习教案8.5 直线 圆锥曲线的综合应用 microsoft word 文档doc-高中数学 201
链接地址:https://www.taowenge.com/p-41713150.html
限制150内