2010年高考数学压轴题系列训练六 doc--高中数学 .doc
《2010年高考数学压轴题系列训练六 doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2010年高考数学压轴题系列训练六 doc--高中数学 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费组卷搜题网2010年高考数学压轴题系列训练六1 如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.来源:学|科|网Z|X|X|K2设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. ()确定的取值范围,并求直线AB的方程;()试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由. 来源:学,科,网Z,X,X,K3已知不等式为大于2的整数,表示不超过的最大整数. 设数列的各项为正,且满足 ()证明
2、()试确定一个正整数N,使得当时,对任意b0,都有 4如图,已知椭圆的中心在坐标原点,焦点F1,F2在x轴上,长轴A1A2的长为4,左准线l与x轴的交点为M,|MA1|A1F1|21 ()求椭圆的方程;来源:学科网 ()若点P为l上的动点,求F1PF2最大值5已知函数和的图象关于原点对称,且 ()求函数的解析式; ()解不等式; ()若在上是增函数,求实数的取值范围来源:学。科。网Z。X。X。K6(本题满分16分)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分. 对定义域分别是Df、Dg的函数y=f(x) 、y=g(x), f(x)g(x) 当xDf且xDg 规定:
3、 函数h(x)= f(x) 当xDf且xDg g(x) 当xDf且xDg(1) 若函数f(x)=,g(x)=x2,xR,写出函数h(x)的解析式;(2) 求问题(1)中函数h(x)的值域;(3)若g(x)=f(x+), 其中是常数,且0,请设计一个定义域为R的函数y=f(x),及一个的值,使得h(x)=cos4x,并予以证明.2010年高考数学压轴题系列训练含答案及解析详解六1 如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.解:(1)设切点A、B坐标分别为,切线AP
4、的方程为: 切线BP的方程为:解得P点的坐标为:所以APB的重心G的坐标为 ,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: (2)方法1:因为由于P点在抛物线外,则同理有AFP=PFB.来源:Zxxk.Com方法2:当所以P点坐标为,则P点到直线AF的距离为:即所以P点到直线BF的距离为:所以d1=d2,即得AFP=PFB.当时,直线AF的方程:直线BF的方程:所以P点到直线AF的距离为:,同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PFB.2设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. ()确定的取值范围
5、,并求直线AB的方程;()试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由. ()解法1:依题意,可设直线AB的方程为,整理得 设是方程的两个不同的根, 且由N(1,3)是线段AB的中点,得 解得k=1,代入得,的取值范围是(12,+). 于是,直线AB的方程为 解法2:设则有 依题意,N(1,3)是AB的中点, 又由N(1,3)在椭圆内,的取值范围是(12,+).直线AB的方程为y3=(x1),即x+y4=0. ()解法1:CD垂直平分AB,直线CD的方程为y3=x1,即xy+2=0,代入椭圆方程,整理得 又设CD的中点为是方程的两根,于是由弦长公式可得 将直线AB的方程
6、x+y4=0,代入椭圆方程得 同理可得 当时,假设存在12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.来源:学科网ZXXK点M到直线AB的距离为 于是,由、式和勾股定理可得故当12时,A、B、C、D四点匀在以M为圆心,为半径的圆上. (注:上述解法中最后一步可按如下解法获得:)A、B、C、D共圆ACD为直角三角形,A为直角|AN|2=|CN|DN|,即 由式知,式左边由和知,式右边式成立,即A、B、C、D四点共圆.解法2:由()解法1及12,CD垂直平分AB, 直线CD方程为,代入椭圆方程,整理得 将直线AB的方程x+y4=0,代入椭圆方程,整理得 来源:学科网ZXXK解和式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010年高考数学压轴题系列训练六 doc-高中数学 2010 年高 数学 压轴 系列 训练 doc 高中数学
限制150内