27.2.2 二次函数的图象与性质的应用教案(华东师大版九年级下) (11)doc--初中数学 .doc
《27.2.2 二次函数的图象与性质的应用教案(华东师大版九年级下) (11)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《27.2.2 二次函数的图象与性质的应用教案(华东师大版九年级下) (11)doc--初中数学 .doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 永久免费在线组卷 课件教案下载 无需注册和点数教学内容272 6二次函数的图象与性质本节共需7课时本课为第6课时主备人:佘中林教学目标1会通过配方求出二次函数的最大或最小值;2在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值教学重点会通过配方求出二次函数的最大或最小值;教学难点在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值教具准备 投影仪,胶片课型新授课教学过程初 备统 复 备情境导入在实际生活中,我们常常会碰到一些带有“最”字的问题,如问题:某商店将每件进价为80元的某种商品按每件100元出售,一
2、天可销出约100件该店想通过降低售价、增加销售量的办法来提高利润经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,设每件商品降价x元,该商品每天的利润为y元,则可得函数关系式为二次函数那么,此问题可归结为:自变量x为何值时函数y取得最大值?你能解决吗? 实践与探索1例1求下列函数的最大值或最小值(1);(2)分析 由于函数和的自变量x的取值范围是全体实数,所以只要确定它们的图象有最高点或最低点,就可以确定函数有最大值或最小值可通过配方法实现。(解:(1)二次函数当时,函数有最小值是(2)二次函数当时,函数有最大值是)探索
3、 试一试,当25x35时,求二次函数的最大值或最小值实践与探索2例2某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:x(元)130150165y(件)705035若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析 日销售利润=日销售量每件产品的利润,因此主要是正确表示出这两个量小结与作业回顾与反思 最大值或最小值的求法,第一步确定a的符号,a0有最小值,a0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值课堂作业:如图2628,在RtABC中,C=90,BC=4,AC=8,点D在斜边AB上,分别作DEAC,DFBC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y(1)用含y的代数式表示AE;(2)求y与x之间的函数关系式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值家庭作业:数学同步导学九下P18 随堂演练教学后记 永久免费在线组卷 课件教案下载 无需注册和点数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 27.2.2 二次函数的图象与性质的应用教案华东师大版九年级下 11doc-初中数学 27.2 二次 函数 图象 性质 应用 教案 华东师大 九年级 11 doc 初中 数学
链接地址:https://www.taowenge.com/p-41730549.html
限制150内